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Bundle Adjustment

m Jointly optimize all
cameras and points A x|
argmin ~ >"|7(X;,C;)- xUH
Cl,..CNC ) ST XNp C )

Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. 1999. Bundle
adjustment—a modern synthesis. In Proceedings of the International Workshop
on Vision Algorithms: Theory and Practice. 298-372.
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Nonlinear Least Squares

m Gaussian Newton
X =arg mian(x)H2

e(X)=e(X+06,)=e(X)+ 5,

J =0¢/ 8X‘X:)A( Jacobian matrix

first order approximation to Hessian

m Levenberg-Marquardt

(373 + 1)K =37 &(R)



Sparse Bundle Adjustment

_ 2 Sparsity patten of Hessian
alrgmin ZHﬂ'(Xi,Cj)_Xin ———

|,|I
CriCng s Koo XNp

1 Point 1 Camera

A

Manolis I. A. Lourakis, Antonis A. Argyros:
SBA: A software package for generic sparse
bundle adjustment. ACM Trans. Math. Softw.

36(1) (2009)



Sparse Bundle Adjustment

m An simple example
4 points
3 cameras
all points are visible in all cameras



Sparse Bundle Adjustment
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Sparse Bundle Adjustment
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Sparse Bundle Adjustment



Sparse Bundle Adjustment
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Sparse Bundle Adjustment

J'1s, =-J"¢
U W\ )| [é&
W' Vv s, ) e

U-WVWT 0Y ) (ec-WVie,
w' V \ oy Ey

S=U =WV W' Schur Complement

-1
S5C = —(EC -WV Ex ) Compute cameras first (# cameras << # points)

T
V5X = —&y -W 5c back substitution for points



Sparse Bundle Adjustment

m In general, NOT all points are visible in all
cameras

4 3
U, :;A}Aj,vi :Z;,BUTBU’WU = A By
1= ]=

A; = B;= 0 If I-th points is invisible (or not matched) in j-th camera
More sparse structure, more speed-up
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Related Works

m Hierarchical BA
Steedly et al. 2003, Snavely et al. 2008, Frahm et al.
2010

m Segment-based BA
Zhu et al. 2014, Zhang et al. 2016 (ENFT)

m Incremental BA

Kaess et al. 2008 (ISAM), Kaess et al. 2011 (ISAM?2),
Indelman et al. 2012 (iLBA), lla et al. 2017 (SLAM++),
Liu et al. 2017 (EIBA)

m Parallel BA
Ni et al. 2007, Wu et al. 2011 (PBA)



Segment-based Bundle

Adjustment

Zhang G, Liu H, Dong Z, et al. Efficient non-consecutive feature tracking for
robust structure-from-motion[J]. IEEE Transactions on Image Processing, 2016,
25(12): 5957-5970.
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The Difficulties for Large-Scale SfM

m Global Bundle Adjustment
Huge variables
Memory limit
Time-consuming
m [terative Local Bundle Adjustment

Large error is difficult to be propagated to the whole
seguence.

Easily stuck in a local optimum.
m Pose Graph Optimization
May not sufficiently minimize the error.
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Segment-based Progressive
StM

m Split a long sequence to multiple short sequences.
m Perform SfM for each sequence and align them together.

m Detect the split point” and further split the sequence if
the reprojection error is large.

m The above procedure is repeated until the error is less
than a threshold.

L ]
( Split (lw “ Optimization
——— S ——o¢

(a) (b)
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Segment-based Progressive
StM

m Split Point Detection

Best minimize the reprojection error w.r.t. a, i.e. steepest descent
direction

A.E:_ = ({)”FT(P;;X?'_)/({)G-A;
G — Z 443_‘1‘?5?{
i=1---N}, e; — X; — ?T(P}IXI)

The inconsistency between two consecutive frames

oo
C'(k,k+1) = arccos Jo “Ihtl
91| - [lgn41




Split Point Detection
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SFM on Garden Dataset

Input Sequences

OEZ I HLSNIFS, FiIm10aM, $FECCEC7457%h, STMKfR167% (BZkiz)
1817, 7fps

VisualSFM: STMKk#E 57 %0 (GPUMDIR)
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Comparison on Garden Dataset

ENFT-SFM VisualSFM ORB-SLAM
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Comparison with ORB-SLAM In
Garden 01 Sequence

49 b
~ \\\ = 1
- .
3 iannapeasy : // 2 LJ /~‘// L

P e, {
| W 2 / e &
f ) 5 |
( . N’ = i 1 = \\/J
ENFT-SLAM ORB-SLAM
Non-consecutive Track Matching Bag-of-words Place Recognition

Segment-based BA Pose Graph Optimization + Traditional BA



Incremental BA In ISAM2

Based on Bayes Tree

Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., & Dellaert, F.
(2012). ISAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.
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Incremental Bundle Adjustment

In order to benefit from increased accuracy offered by
relinearization in batch optimization:

m Fixed-lag / Sliding-window Approaches
m Keyframe-based Approaches

m Incremental Approaches (ISAM, ISAM2, our
EIBA)




Gaussian Factor Graph

kinematics measurement loop constraint

a-priori constraint

projection measurement

Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., &

. . State Dellaert, F. (2012). iISAM2: Incremental smoothing and mapping
. using the Bayes tree. The International Journal of Robotics
O : landmark Research, 31(2), 216-235.
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Main ldeas of ISAM?2

m Reduce fill-in: Use heuristics algorithms CCOLAMD to
provide a suboptimal ordering for factorization (finding
the optimal is NP-hard).

m Encode with the Bayes tree: Introduce Bayes tree
(a.k.a. directed clique tree) to encode the square root
Information matrix.

m Fluid relinearization: Perform fluid relinearization when
adding new factors or updating the linearization points to
avoid batch optimization.

m Partial state updates: Perform partial state updates
when solving the Bayes in order to update a state
variable only when neccesary.



One step: linearization

factor graph A/T i

L &) &)
eliminating the factor graph

using the CCOLAMD ordering
(e.g.ll, lz, X1, X2, x3)

chordal Bayes net i

creating Bayes tree in
reverse elimination order

(e.g.xg, X2,X1, lz, ll) ‘ll E#

Bayes tree

adding new factors/states Gorn i
and applying the fluid
relinearization (e.qg. Clubrx, D

f(xq,x3)) s




One step: partial update

starting from the @

root clique

updating all
variables that
change by more
than a threshold

L, %, Clalxs >




Reduce Fill-in

Reordering with CCOLAMD / CHOLMOD

Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365-1378.



In Gaussian factor graphs, elimination is equivalent
to sparse QR factorization of the measurement

Jacobian.
L L % xy X3
- v i
X X
[ (u)——(x2) ® X3 ]= X X
X
X X
i X X

sparse pattern of the
measurement Jacobian



In Gaussian factor graphs, elimination is equivalent
to sparse QR factorization of the measurement

Jacobian.
L L x1 X
[ X X X
X
— (e H=|X X X
X X X
. X X

sparse pattern of the
information matrix

X3




In Gaussian factor graphs, elimination is equivalent
to sparse QR factorization of the measurement

Jacobian.
ll l2 X1 Xy
[ X X X
X
X1 J€ X, )€ X R — X X
1 \-y\ 3
X

No fill-in if we eliminate the factor
graph using the elimination ordering
L, 15, xq, x5, X3.

sparse pattern of the
The resulting directed graph is called square root information
the chordal Bayes net. matrix
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Encode with the Bayes Tree

li I x1 X3 X3

N
N

N

For each conditional density P(6;|S;)
of the Bayes net, in reverse
elimination order (i.e. x3,x,, x4, 15, 1),
we create a Bayes tree.



Encode with the Bayes Tree

.

L L, x1 x, x3

N
N
N

A clique of the Bayes tree encoding
the conditional density P(l4, x1|x;)
l,, x, are called the frontal variables
X, Is called the separator



Adding New Factors

= _»w

Clnl, > Calvs D
Fluid relinearization when adding new factors.

ALGORITHM
m For each variable affected by new factors, remove the
corresponding cliqgue and all parents up to the root

m Re-interpret the removed part as a factor graph
m Add the new factors into the resulting factor graph.

m Re-order variables and eliminate the factor graph to recreate
a top Bayes tree.

m Insert the orphaned sub-trees back into the new Bayes tree.




a d a new factor f(xq, x3) then
4update the Bayes tree 4

remove top of

Bayes tree insert the
orphaned
>§> Example: é;
adding a factor
re-interpret it as sub-tree
back c

a factor graph

/N,

add the new factor f(xq,x3) reorder and re-eliminate to
create a new Bayes tree
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Example of adding new states and factors
Information only propagates upwards.

x4 b T
X3 x|
X6 x7  x8...x0
x4
x20 . xl9 x]8.. %10 x11 x12
x2 xl7 x13

X xl6 xls x4

Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The

International Journal of Robotics Research, 31(2), 216-235.

R0l CEixhss
QB»xé
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Example of adding new states and factors
Information only propagates upwards.

x4 KD 2

X3 x 1

X607 X8 X0
xY

x20 x19 x18..%x10 xll xI12

:-:2‘ xl7 %13
X 3 wlo xlo xl4

Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The

International Journal of Robotics Research, 31(2), 216-235.

(x20:x2 D

\_)11_9 : x20

Cx16x17 :x18
—_—

XI5 :x16,x17 > %}@

x14:x15.x16

|
x13: xl4,x1_6>
PN N
x12 :x13.x16
]
CxI1:x12,x16
T
C x10:x11x16

x4 : x5x6
x3 : x4,x6

x2 : x3,x6

Gl_: x2,x6
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Example of adding new states and factors

Information only propagates upwards.
x4 Ed X2

x5 %1

X9

Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.



Constrained COLAMD

While adding new states (always along with adding
new factors), information only propagates upwards.

1. Force the most recently accessed variables to the
end and still provide a good overall ordering.

2. Subsequent updates will then only affect a small part
of the tree (the top of the Bayes tree).

3. Efficient in most cases, except for large loop
closures.
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Fluid Relinearization

ALGORITHM

Fluid relinearization when linearization points
change (together with adding new factors).

1. For each affected variable remove the corresponding
cligue and all parents up to the root.

2. Relinearize all factors required to recreate top.
3. Add cached linear factors from orphans.

4. Re-order variables and eliminate the factor graph to
create a new top Bayes tree.

5. Insert the orphaned sub-trees back into the new Bayes
tree.
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Partial State Updates

ALGORITHM

Starting from the root clique:

1. For current clique:
compute update of frontal variables from the
local conditional density.

2. For all variables that change by more than a
threshold:
recursively process each descendant containing
such a variable.




Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., & Dellaert, F.
(2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The
International Journal of Robotics Research, 31(2), 216-235.
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Efficient Incremental BA

Liu H, Li C, Chen G, et al. Robust Keyframe-based Dense SLAM with an RGB-
D Camera[J]. arXiv preprint arXiv:1711.05166, 2017.



Revisit Standard BA

m A regular BA function

W(K( ; J)) 2 (CiX)) - 25
E E | ||6 + || IF;
V; 9z
J i€ ReprOJectlon error Inverse depth error

“V; 18 the set of cameras in which point j 1s visible.

m Convert Huber norm by re- welghtlng scheme
F= > lIf(Cu X3,

_ _ J i€V
m | Inearization

J is 3n, X (6n, + 3n,)
f;;(Ci, X)) ~ Jc,; 6c; +Ix,;0x; —¢; f~|J6—el; s P

Jacobian matrix

m Solving normal equation J'Jé=1J"e



Revisit Standard BA

m Step 1. Construct normal equation

Compute and store the small non-zero block

matrices U;;, V;;, W;;

Do not need to reconstruct J'J from scratch.
Only need to add new block matrices.

J'Jo=1J"e U :n, Xng

Vin, Xn,

U W||oc| |u W:n, xn,
W' V|l|éx| |v W;; no zero only if point

j is visible in camera i



Revisit Standard BA

m Step 2: Marginalize points to construct
Schur Complement

S Is also sparse, with non-zero block matrix S;,;,
If and only If camera i; and i, share common
points.

Séc =g
S=(U-WVIwD),
g=Uu-— WV ly.



Revisit Standard BA

m Step 3: Update cameras

Use preconditioned conjugate gradient (PCG)
to solve for oc

s PCG naturally leverages the sparseness of S
C; = exp(dc;)C;
m Step 4: Update points
Back substitution

1 -
6Xj = ij (Vj — Z W;;—éci) XJ+ 6Xj
iE(Vj



Revisit Standard BA

m Num. of observations in each keyframe much
larger than Num. of cameras
Computation :
Step 1,2 > Step 3
Construction of normal equation and Schur
complement takes much more time than PCG
iterations
m most variables nearly unchanged (incremental
reconstruction)
Most computation in steps 1, 2, 4 are unnecessary

Contribution of most f,-js to normal equation nearly
remains the same
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Efficient Incremental BA (EIBA)

m Local BA vs. Global B
local BA : suboptimal, especially when the local map
contains large error.
global BA : accurate but slow, high latency, lots of
unnecessary computation.

m Incremental BA
Makes maximum use of intermediate computation for

efficiency
Adaptively updating affected keyframes for map

refinement
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One iteration in EIBA

m Step 1 : Update normal equations and
Schur complement from the last iteration

Store the effect of fi; in A}, A}, b}, and b,
Initialize to O at first, only re computed when

linearization point of f;; is changed.

Remove contribution from the last iteration,
refresh them, update for current iteration.

Update from A}, A}, bf; and b,
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One iteration in EIBA

m Step 1 : Update normal equations and
Schur complement from the last iteration

for each point j and each camera i € V; that C; or X; is

changed do
Construct linearized equation
Sii— = AY; AV = JT Jc 3 Sii+ —AU

ij U
. —_AV. Y C V.. V
Vjj A A injJXiy Vjjt+ = A;]

gi— = bu bu = JE;jeij; gi"' = bl.l.

___v.v_T__.__v
Vi— = bij’ bij = injeu, Vit = bij
‘Nr___ T

U_JC;"JXU

Mark V;; Jupdated
end for



One iteration in EIBA

m Step 2 : Update point marginalization and
Schur complement from last iteration

for each point j that V;; is updated and each camera pair
(i1,i2) € V; xV; do

Siéiz_l_ - A£$1 2]

Ajiyy = Wil VJT]'l Wi

Siiy~ = A£$1 2]
end for
for each point j that V;; is updated and each camera i € V;
do

—h8 . W8 _— Vilv.: 6. — he
cna 1or



One iteration in EIBA

m Step 3 : Update cameras
Solve oc by PCG
Change C; only if ||dc;|lexceeds a threshold €.

m Step 4 : Update points

Back substitution only for visible points in the
changed cameras

Change X; only if ||dx;|| exceeds a threshold €



EIBA In RKD-SLAM

m Energy function

Reprojection error Inverse depth error
W(K(CEXJ)) — Xjj Z_I(Cixj) - Z;il
> ~ ls + Il —— s
j i€V X z
-1 4112
+ > lllog(Ciy 0 Cyp o TR,
(i,i)eL

Loop constraint

Consist of 3D points observation term and
loop constraint term



EIBA In RKD-SLAM

m 3D point observation term

; “NCiX) - !
PIPI ([t TR T

Jj i€V <

Use Inverse depth parameterize X;
s X; = C (2 K '%jx)
= Each re-projection equation f;;relates two camera
poses C; and Ci ,one 3D point X;
m Linearization
£;;(Ci, Cr, X;) ~ Jc,;;6¢; + Iy 0¢, +JIx;;0x; — €ij,
= Also need to update Sk, Six, Wi, and gx



EIBA In RKD-SLAM

m Loop constraint term
D, log(Cii 0 Ci o TR,
(i1,ip)eL
Represented as relative pose T;,;,
Linearization
£(Ci, Ciy) = Jiy6c,, +Jioc,, —e.

Update
J TJ“




Performance of EIBA
m Computation time

103 E T T 1 T T
£ | ——i5AM2 Relinearize Skip 10
iSAM2 Relinearize Skip 5
iSAM2 No Relinearization
102 & EIBA

Time (ms)
a—l

o
o

102 I I \ I L 1 I ! I
10 20 30 40 50 60 70 80 90

Key Frames

Fig. 4. The computation time of our EIBA and iSAM2 while incrementally
adding each new keyframe on “fr3_long_office” sequence.



Performance of EIBA

m Computation time
Our EIBA is faster by an order of one

magnitude than ISAM2.

Sequence Num. of Camera / Points | Num. of Observations EIBA iISAM?2
No relinearization | relinearizeSkip = 10 | relinearizeSkip = 5
fr3_long_office 92 /4322 12027 88.9ms 983.9ms 1968.2ms 2670.9ms
fr2_desk 63 / 2780 6897 34.8ms 507.8ms 850.4ms 1152.0ms




Performance of EIBA
m Optimized reprojection error

5 T T T T T
— iSAM2 Relinearize Skip 10
45— |  —iSAM2Relinearize Skip 5
— iISAM2 No Relinearization
EIBA
a4l ! i
g
(= 35
-
|
c 3
° j
g
-§=ZS
&
o
2
1.5
1 | I | L 1 | 1

10 20 30 40 50 60 70 80 90
Key Frames

Fig. 5. The optimized reprojection error (RMSE) for our EIBA and iSAM?2
while incrementally adding each new keyframe on “fr3_long_office” se-
quence.
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Open-source Solver & BA

g20: https://github.com/RainerKuemmerle/g20
GTSAM& ISAM: https://bitbucket.org/gtborg/gtsam/
Ceres Solver: http://ceres-solver.org/

Bundler: http://www.cs.cornell.edu/~snavely/bundler/
PBA: https://grail.cs.washington.edu/projects/mcba/

EIBA: the source code will be released soon.
http://www.zjucvg.net



https://github.com/RainerKuemmerle/g2o
https://bitbucket.org/gtborg/gtsam/
http://ceres-solver.org/
http://www.cs.cornell.edu/~snavely/bundler/
https://grail.cs.washington.edu/projects/mcba/

