

ForceBoard: Subtle Text Entry Leveraging Pressure

Mingyuan Zhong, Chun Yu, Qian Wang, Xuhai Xu, Yuanchun Shi

Pervasive Human Computer Interaction Department of Computer Science and Technology

Tsinghua University

Traditional text entry methods

Touch input

Wet screen

Physical keyboards or buttons

Limited device size

ForceBoard: Pressure-based text entry

- One-dimensional
- Using pressure as the only channel for text entry
- Text entry with subtle motion

Outline

- Pilot Study: Making design decisions
- User Study 1: Error model of pressure control
- Design and Implementation
- User Study 2: Performance evaluation
- Applications and Limitations

Pilot Study: Making design decisions

- Keyboard Layout: A-Z; QWERTY; ENBUD
- Cursor Width: 1, 3, 5, 7, 9
- Selection Method: Dwell and Quick Release

An example condition for the pilot study

- Keyboard layout: A-Z
- Cursor width: 5
- Selection Method: Dwell (not illustrated)

Keyboard Layout

- Keyboard layouts:
 - abcdefghijklmnopqrstuvwxyz (Alphabetical A-Z)
 - qwertyuiopasdfghjklzxcvbnm (QWERTY)
 - enbudjcoflyqthvigmxrzpkwas (ENBUD)
- dimension
- Users preferred the alphabetical layout

• Users were not familiar with the QWERTY or ENBUD layout in one-

Cursor Width

- Tested 1, 3, 5, 7, 9-letter-wide cursors
- Users reported difficulty controlling the cursor for widths < 5
- Simulation with a 10,000-word language model show that a 9-letter-wide cursor would lead to too much conflicts
- Chose cursor widths 5 & 7

50%			
40%			
30%			
20%			14.5%
10%		3.6%	
0%	<u> </u>	7	9

Selection Method: Dwell and Quick Release

Cursor

Quick Release

Quick Release

Quick Release

Selection Method: Dwell vs. Quick Release

- Dwell: holding pressure for 300 ms selects the target
- Quick Release: releasing pressure selects the target
- Users preferred Quick Release and considered it to be much faster

Selection Method: Dwell vs. Quick Release

- Dwell: holding pressure for 300 ms selects the target
- Quick Release: releasing pressure selects the target
- Users preferred Quick Release and considered it much faster
- In-contact Quick Release: keep the thumb in contact with the screen after selecting each letter

Pilot Study: Summary

- Alphabetical one-dimensional keyboard layout
- Cursor width should be 5 or 7
- In-contact Quick Release

Outline

- Pilot Study: Making design decisions
- User Study 1: Error model of pressure control
- Design and Implementation
- User Study 2: Performance evaluation
- Applications and Limitations

Study 1: Error model of pressure control

Wizard of Oz approach

Task 23 / 78 Cursor width: 7	hgv	
	**-	
a b c d e f	ghijklmnopq	

• Cursor widths 5 or 7

• Random 3-letter sequences

Study 1: Error model of pressure control

intended target center

Offset is position when the cursor overshoots the target position

• Offset: distance between the cursor location at Quick Release and the

Error model of pressure control

- Distribution of Offset
- Miss rate: percentage of pressure input where users completely overshot or undershot the target letter
 - 5-letter-wide cursor: 7.7% missed
 - 7-letter-wide cursor: 5.8% missed
- Users attempted to release pressure and move the cursor to the intended position

Outline

- Pilot Study: Making design decisions
- User Study 1: Error model of pressure control
- Design and Implementation
- User Study 2: Performance evaluation
- Applications and Limitations

Interaction Design

(while applying pressure)

__abcdefghijklmnop**qrstuvw**xyz?!×

(dwell for 300 ms)

_abcdefghijklmnop<mark>qrstuvw</mark>xyz?!×

(during quick release)

_<mark>abcdefg</mark>hijklmnopqrstuvwxyz?!×

- Selecting a candidate word: tap to select the next one; long press to select the previous one
- Inputting the word "force"

Word prediction

- Statistical decoding: error model of pressure control + unigram language model (10,000 words)
- User input a sequence of pressure

P(w|I) =

Suppose pressure applied for each letter to be independent

P(I|w)

• OOV words can be entered by selecting each individual letter

$$re I = p_1 p_2 ... p_n$$
$$= \frac{P(w) \cdot P(I|w)}{P(I)}$$

$$=\prod_{i=1}^n P(p_i|l_i)$$

Outline

- Pilot Study: Making design decisions
- User Study 1: Error model of pressure control
- Design and Implementation
- User Study 2: Performance evaluation
- Applications and Limitations

User Study 2: Performance evaluation

- 12 users with no experience with pressure-based input
- A character-level session and a Word-level session
- Users entered two phrases as a warm-up before each session
- Character-level session: 2 phrases × 4 blocks
- Word-level session: 10 phrases × 4 blocks

Results

• Error rates

- Uncorrected: 1.1% for character-level; 0.47% for word-level
- Corrected: 2.0% for character-level; 1.8% for word-level
- Text entry rate

 Character-level:
 average: 4.24 wpm
 last block: 4.42 wpm
 Word-level:
 average: 11.04 wpm
 last block: 12.80 wpm

Outline

- Pilot Study: Making design decisions
- User Study 1: Error model of pressure control
- Design and Implementation
- User Study 2: Performance evaluation
- Applications and Limitations

Applications

- When device form-factor is limiting
- When finger movement is not desired
- When capacitive touchscreens are infeasible
- When used with a separate display

Scenario 1: Secret Typing

Limitations and future work

Limitations

- Slower than touch-based keyboards
- Requires continuous visual attention

Future work

- Longitudinal study on learning, fatigue, and mental stress
- Investigate rate control instead of position control
- More sophisticated language models

- Pressure as the main input channel
- Subtle thumb movement
- Modeled continuous pressure control
- 11 wpm after 10 minutes training

Link to this paper https://dl.acm.org/citation.cfm?id=3174102 **Tsinghua HCI Group** http://pi.cs.tsinghua.edu.cn

Pervasive Human Computer Interaction Department of Computer Science and Technology

Ternary

Gaussian

Model

One-Dimensional Handwriting: Inputting Letters and Words on Smart Glasses (CHI '16)

https://dl.acm.org/citation.cfm?id=2858542

https://dl.acm.org/citation.cfm?doid=3173574.3173811

My email jason.nkg@gmail.com

