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INTRODUCTION

MOVING TARGETS EVERYWHERE
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INTRODUCTION

SELECTING MOVING TARGETS: A CHALLENGING TASK

« A two-phase job: track and
click

* Higher demand on sensory-
motor system

 Worse user performances




INTRODUCTION

TECHNIQUES AND MODELS IN MOVING TARGET SELECTION

Original appearance modified

Hold [Hajri 2011] Target Ghost [Hasan 2011] Comet [Hasan 2011]



INTRODUCTION

TECHNIQUES AND MODELS IN MOVING TARGET SELECTION
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INTRODUCTION

TECHNIQUES AND MODELS IN MOVING TARGET SELECTION

Movement Time

Endpoint Distribution

Static Targets Moving Targets
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INTRODUCTION

OVERVIEW OF OUR WORK

* The problem of modeling
the endpoint distribution In
1D moving target selection

* A Ternary-Gaussian model
to interpret the endpoint
distribution

« Two model extensions:
1) Error-Model
« 2) BayesPointer
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MODELING ENDPOINT DISTRIBUTION

PROBLEM DEFINITION

The task of 1D moving target selection Experiment program
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MODELING ENDPOINT DISTRIBUTION

PROBLEM DEFINITION
moving target ?
[k — Relationship
. . workspace ;
W endpoints

Finding the relationship between the task parameters and endpoint

distribution



MODELING ENDPOINT DISTRIBUTION

HYPOTHESES

* H1: The endpoint distribution in moving target selection is
Gaussian.
« Control Limit Theorem

* Endpoints of selecting static targets are modeled with Gaussian
distributions In previous studies
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[Control Limit Theorem from [Zhali etc. 2004] [Bi & Zhai 2013]
Rouaud 2013]



MODELING ENDPOINT DISTRIBUTION

HYPOTHESES

* H2: The initial distance A does not affect the endpoint distribution.

* The Initial distance does not affect the endpoint distribution in static target
selection

« [nitial distance showed little effect on movement time in moving target
selection with position control system

X ~N(u,0) X ~N(u,0) Position control

14=0 u=c system

o= N2 & =kl [Jagacinski &
[Zhai etc. 2004] [Bi & Zhai 2013] Balakrishnan 2002]



MODELING ENDPOINT DISTRIBUTION

HYPOTHESES

* H3: The target width (W) and the moving velocity (V) affect the
endpoint distribution.
« Standard deviation o of endpoint distribution is usually assumed to be

proportional to target size
« Target movement leads to a larger fall-behind effect and distributed range

of endpoints
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[Pavlovych & Stuerzlinger 2011] [Hasan etc. 2011]




MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

» Back to the problem:

The relationship between task parameters and endpoint distribution

----- Target Center

Target Border

X Coordinate



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

» Back to the problem:

The relationship between task parameters and endpoint distribution

----- Target Center

Hit Probability
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L
=
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Target Border

X Coordinate

« From Hypothesis 1, the endpoint distribution can be formulated as a Gaussian distribution, and it
can be uniquely defined by p and o of the Gaussian distribution.



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

 Problem now is transmit to:

Finding the function of y = f(A, 'V, V) and c = g(A N, V)

----- Target Center

Hit Probability

Target Border

/

X Coordinate

* From Hypothesis 2, the endpoint distribution is not related to A, so we can remove it from our
target functions.



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

 Problem now is transmit to:

Finding the function of y = f(W, V) and o = g(W, V)

----- Target Center

Hit Probability

Target Border

/

X Coordinate

* From Hypothesis 3, we can inferred that the endpoint distribution may consist with two Gaussian
components related to W and V



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

 Problem now is transmit to:

Finding the function of y = f(W, V) and o = g(W, V)

Target Border
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* From Hypothesis 3, we can inferred that the endpoint distribution may consist with two Gaussian
components related to W and V



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

 Problem now is transmit to:

Finding the function of y = f(W, V) and o = g(W, V)

Hit Probability

----- Target Center

Target Border

X Coordinate

* From Hypothesis 3, we can inferred that the endpoint distribution may consist with two Gaussian
components related to W and V



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

 Problem now is transmit to:

Finding the function of y = f(W, V) and o = g(W, V)

X,~N(u,o0,’) Xrm
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X
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----- Target Center
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« We further add a third Gaussian component to reveal the absolute accuracy of device



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION
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« By simply having the sum of these three Gaussian components, we can obtain the total
Gaussian distribution and the formulations of y and o of this distribution



MODELING ENDPOINT DISTRIBUTION

THEORETICAL DERIVATION

Hit Probability

Ternary-Gaussian model
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» We call the formulation of this total distribution the Ternary-Gaussian model.



MODELING ENDPOINT DISTRIBUTION

EXPERIMENT DESIGN

Investigate the effect of

initial distance

>

Experiment Setup
and Participant

EXPT 1 (4 conditions):
e 4levels of initial distances
e FHxed widthandtarget speed

>

Investigate the effects of

size and speed

EXPT 2 (32 conditions):
e 4levels of width
e 4levels of speed
e 2 movingdirections
e Randominitial distances

Verify Support

Hypothesis 2

— R

Hypothesis 3

Train

Ternary-Gaussian Model

A

]

User performance data




MODELING ENDPOINT DISTRIBUTION

EXPERIMENT DESIGN

moving away moving towards




MODELING ENDPOINT DISTRIBUTION

EXPERIMENT DESIGN

e eee—1 D & S & e ad - = ,..-:v— ———

« 12 subjects (6 females and 6 males, with an average age of 27)
» 23-inch (533.2X312mm) LED display at 1,920< 1,080 resolution
e Dell MS111 mouse with 1000 dpi as pointing device



MODELING ENDPOINT DISTRIBUTION

HYPOTHESES VERIFICATION
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All distributions of EXPT 1 and EXPT 2 passed the normality test.
The endpoint distribution of moving target selection is Gaussian.



MODELING ENDPOINT DISTRIBUTION

HYPOTHESES VERIFICATION
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Both p and o of the endpoint distribution showed no significant different across all the 4 A levels.

Initial distance A has little effect on the endpoint distribution.



MODELING ENDPOINT DISTRIBUTION

HYPOTHESES VERIFICATION
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Both V and W exhibited significant effects on y and o, and their interaction effect is also significant.

Target width and velocity significantly affect the endpoint
distribution.



MODELING ENDPOINT DISTRIBUTION

MODEL FITTING
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MODEL EXTENSIONS

ERROR RATE PREDICTION AND TARGET SELECTION

Ternary-Gaussian Model

Bror-Model [«

Extend Validate

—

User performance data
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ser performance in Game

EXPT 3 (Game):
e 3levels of game difficulty
e Range of size: 45-135 pixels
e Range of speed: 0-1312 pixels/sec

e




MODEL EXTENSIONS

ERROR-MODEL
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 Error rate: the possibility of endpoint drop outside of a target.

 Calculate the area out of the target’s boundaries through CDF (Cumulative
distribution function) of the endpoint distribution.



MODEL EXTENSIONS

error rates - away error rates - towards
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* Error-Model fitted the data well in both moving directions

 Error rate increases when target velocity increases and when target width
decreases



MODEL EXTENSIONS

BAYESPOINTER

moving targets endpoint distributions
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« BayesPointer integrates the Ternary-Gaussian model into Bayes’ rule to determine the
Intended target instead of the physical boundaries.

« likelihood function (Blue) > likelihood function (Gray)



MODEL EVALUATION

EVALUATION IN A GAME INTERFACE
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The popular game “Don’t Touch The White Tile” in iOS App Store

Players had to tap the black tile in the lowest row

3 game levels with decreased target size, 5 lives for each level




MODEL EVALUATION

PREDICTING ERROR RATE
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Error-Model showed good performances in predicting error rate in almost all
conditions (average MAE of 2.7%)).



MODEL EVALUATION

ASSISTING THE SELECTION OF MOVING TARGET
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d d

level 1 level 2 level 3 level 1 level 2 level 3

(2]

o
3
o

]
o O
w
o

scores (count)
N WD
o

o
=
o

error rates (%)
N
o

Y
o

o
o

BayesPointer showed higher selection accuracy compare to Basic technique

Subjective feedback showed that participants like using BayesPointer more
than using Basic technigue



CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

* The first attempts to model human behavior uncertainty in moving
target selection

* A Ternary-Gaussian model is proposed to interpret the endpoints
distribution in moving target selection

* Two model extensions were demonstrated include predicting error
rates and assisting moving target selection



CONCLUSIONS AND FUTURE WORK

TAKEAWAY S

* |nitial distance does not affect the endpoint distribution in moving
target selection

* When the target is moving fast the endpoints tend to drop behind
the target and have a larger distributed range

* Error rate increases when target velocity increases and when
target width decreases



CONCLUSIONS AND FUTURE WORK

FUTURE WORK

« Examining whether our model can be transferred into other
Interaction devices such as touch screen and stylus

« Modeling uncertainty in selecting moving targets with changing
velocity and in 2D/3D space

« Comparing BayesPointer with other state-of-the-art pointing
techniques such as Bubble Cursor and Comet



Mu,0) ~ (W,V)

Ternary-Gaussian Model Error-Model BayesPointer
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