Face Aging with Identity-Preserved
Conditional Generative Adversarial

Networks
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Face Aging

< Face aging 1s a task of synthesizing faces of a certain
person under a given age.

Images are from FG-net.

Challenges: the lack of labeled faces of the same person across a long age range.



Recent Progress of Generative Adversarial
Networks(GANSs)

» GANSs

min max By p,,, (2)[108 D(2)]+Eznp. () [log(1-D(G(2)))]

» Deep Convolutional GANs, DCGANs
*» Energy Based GANs

» Wasserstein GANs, WGANSs

» Least Squares GANs, LSGANs

» Improved WGANSs



Typical Conditional GANs
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Where to insert condition information?

How to train condition GANSs?
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Related work

Latent Vector Approximation
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Face Aging with Conditional Generative Adversarial Networks --Antipov et al

Obtain about 80% of identity-preservation.
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Loss Function
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x 1s from source age group.
Lidentity = Z |h(z) — h(G(z|Cy)|? y is from target age group.
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Datasets

» Cross-Age Celebrity Dataset(CACD)

< More than 160, 000 faces of 2000 celebrities with age
ranging from 16 to 62.

» Image resolution 1s 128 x 128
< We split images into 5 age groups, 10-20, 21-30, 31-40,

41-50, 50+



Experiments: quantitative comparison

Table 1. The performance of different methods.

CAAE acGANSs IPCGANSs
Face verification (%) 91.53 85.83 96.90
Image quality (%) 68.85 39.67 71.74
Age classification (%) 24.84 32.70 31.74
VGG-face score 19.534+1.76 | 23.42+1.82 | 36.33+1.85
Time cost (S) 0.71 38.68 0.28

100 test images in the 11-20 age group. For each test image, we generate 4 aged faces
with different target age conditions.

80 volunteers



Experiments: quantitative comparison

Table 2. The effect of with/without identity-preserved module and age classifier module(%)

age classification

face verification

with age classifier

w/o age classifier

with identity-preserved term

w/o identity-preserved term

31.37

28.73

99.07

98.15




Experiments: qualitative comparison
source al al0 a20 a30

The aging effect of different age classification loss weights.



Experiments: qualitative comparison

input no conv2 conv3 conv4 convb pool5 fcé fc7

The aging effect with different feature layers.
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Thank you!



