
for Distortion Optimization

Yufeng Zhu

University of British Columbia

Computer Science Department | Imager Lab

Blended Cured Quasi-Newton

Background

Distortion Optimization

Local Optimization

Rest Shape Initial Shape Optimization Progress Optimal Map

Non-Flip Constraint

A

B

C

D A

B

C

D
D

D

A

C

D

B

A

C

D

B

How To Optimize

Optimality Condition

Newton’s Method

Newton’s Method

Gradient Descent

Pros & Cons

Newton’s Method Gradient Descent

Cheap Per Iteration Cost

Poor Convergence Rate

Good Convergence Rate

Stability

Expensive Per Iteration Cost

Review

Newton’s Method

Good Convergence Rate

Stability

Expensive Per Iteration Cost

[Teran et al. 2005]

[Shtengel et al. 2017]

Review

Newton’s Method

Good Convergence Rate

Stability

Expensive Per Iteration Cost

[Shtengel et al. 2015]

[Chen & Weber 2016]

[Wang & Yang 2016]

Review

Gradient Descent

Cheap Per Iteration Cost

Poor Convergence Rate

[Bouaziz et al. 2014] [Rabonovich et al. 2016]

[Claici et al. 2017]

[Peng et al. 2018]

[Kovalsky et al. 2016]

[Liu et al. 2017]

Proxy

Acceleration

Proxy

Proxy

Decoupling

Blended Cured�asi-Newton for Distortion Optimization • 1:9

Laplacian

Hessian

Fill (AMD Order)

X

Y

Z

X Y Z

X

Y

Z

X Y Z

Fig. 8. Sparsity Di�erences in Proxies. Left: The scalar Laplacian (top) is
smaller and sparser than the Hessian and its approximations (bo�om) used in
CM, PN, SLIM and AKAP. Right: This results in a much cheaper factorization
and solve for the Laplacian; it is applied in both BCQN and AQP independently
to each coordinate where only a one-time factorization precompute is required;
CM, PN, SLIM and AKAP require factorization at each iterate.

sparse triangular solves with the Laplacian’s Cholesky factor and
outer-product updates with a small �xed number of L-BFGS history
vectors. Recall that we separately solve for each coordinate with a
scalar Laplacian, not using a larger vector Laplacian on all coordinates
simultaneously; this also exposes some trivial parallelism. Apart from
the Laplacian, all steps are either linear (dot-products, vector updates,
gradient evaluations, etc.) or typically sublinear (DPJ assembly and
iterations, which only operate on the small number of collapsing
triangles, and again are easily parallelized).
As Lipton et al. proved [1979], the lower bounds for Cholesky

factorization on a two-dimensional mesh problem with n degrees of
freedom areO(n logn) space andO(n3/2) sequential time, and in three-
dimensional problems where vertex separators are at least O(n2/3),
their Theorem 10 shows the lower bounds are O(n4/3) space and
O(n2) sequential time. On moderate size problems running on current
computers, the cost to transfer memory tends to dominate arithmetic,
so the space bound is more critical until very large problem sizes are
reached.

7.1 Comparison with other algorithms
The per-iterate performance pro�le of AQP is most similar to BCQN: it
too is dominated by a Laplacian solve. The only di�erence is the extra
linear and sublinear work which BCQN does for the quasi-Newton
update and the barrier-aware �ltering; even on small problems, this
overhead is usually well under half the time BCQN spends, and as
the next section will show, the improved convergence properties of
BCQN render it faster.
The second-order methods we compare against, PN and CM, as

well as the more approximate proxy methods, SLIM and AKAP, all

use a fuller stencil which couples coordinates. The same asymptotics
for Cholesky apply, but whereas AQP and BCQN can solve a scalar
n ⇥ n Laplacian d times (once for each coordinate, independently),
these other methods must solve a single denser nd ⇥ nd matrix, with
d2 times more nonzeros: see Figure 8. Moreover, for all these methods
the proxy matrix changes at each iteration and must be refactored,
adding substantially to the cost: factorizations are signi�cantly slower
than backsolves.

8 EVALUATION
8.1 Implementation
We implemented a common test-harness code to enable the consistent
evaluation of the comparitive performance and convergence behavior
of SGD, PN, CM, AQP, L-BFGS and BCQN across a range of energies
and distortion optimization tasks including parameterization as well
as 2D and 3D deformations, where these methods allow. For AQP this
extends the number of energies it can be tested with, while more gen-
erally providing a consistent environment for evaluating all methods.
We hope that this code will also help support the future evaluation
and development of new methods for distortion optimization.

Themain body of the test code is inMATLAB to support rapid proto-
typing. All linear system solves are performed with MATLAB’s native
calls to CHOLMOD [Chen et al. 2008] with additional computational-
heavy modules, primarily common energy, gradient and iterative LCP
evaluations, implemented in C++. As linear solves are the bottleneck
in all methods covered here, an additional speed-up to all methods
is possible with Pardiso [Petra et al. 2014a,b] in place of CHOLMOD;
however, as discussed in Section 8.4 this does not change the relative
merits of the methods, and would add an additional external depen-
dency to the test code. For veri�cation we also con�rm that iterations
in the test-harness AQP and CM implementations match the o�cial
AQP [Kovalsky et al. 2016] and CM [Shtengel et al. 2017] codes.

All experiments were timed on a four-core Intel 3.50GHz CPU. We
have parallelized the damped Jacobi LCP iterations with Intel TBB;
with more cores the overhead reported below for LCP iterations is
expected to diminish rapidly. For all UV parameterization problems we
follow Kovalsky et al. [2016] and compute an initial, locally injective
embedding via a single linear solve with the cotan Laplacian; if it
fails (is not locally injective), we then fall back to plain Tutte, so that
robustness is maintained. For all constrained deformation examples,
with the exception of the Armadillo in Figure 14, we begin with an
initially injective mapping. For the Armadillo deformation example
only, we apply the LBD method [Kovalsky et al. 2015] to create a
rough, locally injective initialization from the initial constrained non-
injective deformation and pass this to both compared methods. To
enforce Dirichlet boundary conditions, i.e. positional constraints, we
use a standard subspace projection [Nocedal and Wright 2006], i.e.
removing those degrees of freedom from the problem. For constrained
problems we apply the standard approach of projecting gradients
to the null-space of constraints: a stationary point is then reached
only if the (projected) gradient vanishes, just as in the unconstrained
setting. When line search is employed we �rst �nd a maximal non-
inverting step size with Smith and Schaefer’s method [2015], followed
by standard line search with Armijo and curvature conditions.

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Blended Cured �asi-Newton for Distortion Optimization • 1:9

Laplacian

Hessian

Fill (AMD Order)

X

Y

Z

X Y Z

X

Y

Z

X Y Z

Fig. 8. Sparsity Di�erences in Proxies. Left: The scalar Laplacian (top) is
smaller and sparser than the Hessian and its approximations (bo�om) used in
CM, PN, SLIM and AKAP. Right: This results in a much cheaper factorization
and solve for the Laplacian; it is applied in both BCQN and AQP independently
to each coordinate where only a one-time factorization precompute is required;
CM, PN, SLIM and AKAP require factorization at each iterate.

sparse triangular solves with the Laplacian’s Cholesky factor and
outer-product updates with a small �xed number of L-BFGS history
vectors. Recall that we separately solve for each coordinate with a
scalar Laplacian, not using a larger vector Laplacian on all coordinates
simultaneously; this also exposes some trivial parallelism. Apart from
the Laplacian, all steps are either linear (dot-products, vector updates,
gradient evaluations, etc.) or typically sublinear (DPJ assembly and
iterations, which only operate on the small number of collapsing
triangles, and again are easily parallelized).
As Lipton et al. proved [1979], the lower bounds for Cholesky

factorization on a two-dimensional mesh problem with n degrees of
freedom areO(n logn) space andO(n3/2) sequential time, and in three-
dimensional problems where vertex separators are at least O(n2/3),
their Theorem 10 shows the lower bounds are O(n4/3) space and
O(n2) sequential time. On moderate size problems running on current
computers, the cost to transfer memory tends to dominate arithmetic,
so the space bound is more critical until very large problem sizes are
reached.

7.1 Comparison with other algorithms
The per-iterate performance pro�le of AQP is most similar to BCQN: it
too is dominated by a Laplacian solve. The only di�erence is the extra
linear and sublinear work which BCQN does for the quasi-Newton
update and the barrier-aware �ltering; even on small problems, this
overhead is usually well under half the time BCQN spends, and as
the next section will show, the improved convergence properties of
BCQN render it faster.
The second-order methods we compare against, PN and CM, as

well as the more approximate proxy methods, SLIM and AKAP, all

use a fuller stencil which couples coordinates. The same asymptotics
for Cholesky apply, but whereas AQP and BCQN can solve a scalar
n ⇥ n Laplacian d times (once for each coordinate, independently),
these other methods must solve a single denser nd ⇥ nd matrix, with
d2 times more nonzeros: see Figure 8. Moreover, for all these methods
the proxy matrix changes at each iteration and must be refactored,
adding substantially to the cost: factorizations are signi�cantly slower
than backsolves.

8 EVALUATION
8.1 Implementation
We implemented a common test-harness code to enable the consistent
evaluation of the comparitive performance and convergence behavior
of SGD, PN, CM, AQP, L-BFGS and BCQN across a range of energies
and distortion optimization tasks including parameterization as well
as 2D and 3D deformations, where these methods allow. For AQP this
extends the number of energies it can be tested with, while more gen-
erally providing a consistent environment for evaluating all methods.
We hope that this code will also help support the future evaluation
and development of new methods for distortion optimization.

Themain body of the test code is inMATLAB to support rapid proto-
typing. All linear system solves are performed with MATLAB’s native
calls to CHOLMOD [Chen et al. 2008] with additional computational-
heavy modules, primarily common energy, gradient and iterative LCP
evaluations, implemented in C++. As linear solves are the bottleneck
in all methods covered here, an additional speed-up to all methods
is possible with Pardiso [Petra et al. 2014a,b] in place of CHOLMOD;
however, as discussed in Section 8.4 this does not change the relative
merits of the methods, and would add an additional external depen-
dency to the test code. For veri�cation we also con�rm that iterations
in the test-harness AQP and CM implementations match the o�cial
AQP [Kovalsky et al. 2016] and CM [Shtengel et al. 2017] codes.

All experiments were timed on a four-core Intel 3.50GHz CPU. We
have parallelized the damped Jacobi LCP iterations with Intel TBB;
with more cores the overhead reported below for LCP iterations is
expected to diminish rapidly. For all UV parameterization problems we
follow Kovalsky et al. [2016] and compute an initial, locally injective
embedding via a single linear solve with the cotan Laplacian; if it
fails (is not locally injective), we then fall back to plain Tutte, so that
robustness is maintained. For all constrained deformation examples,
with the exception of the Armadillo in Figure 14, we begin with an
initially injective mapping. For the Armadillo deformation example
only, we apply the LBD method [Kovalsky et al. 2015] to create a
rough, locally injective initialization from the initial constrained non-
injective deformation and pass this to both compared methods. To
enforce Dirichlet boundary conditions, i.e. positional constraints, we
use a standard subspace projection [Nocedal and Wright 2006], i.e.
removing those degrees of freedom from the problem. For constrained
problems we apply the standard approach of projecting gradients
to the null-space of constraints: a stationary point is then reached
only if the (projected) gradient vanishes, just as in the unconstrained
setting. When line search is employed we �rst �nd a maximal non-
inverting step size with Smith and Schaefer’s method [2015], followed
by standard line search with Armijo and curvature conditions.

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Fill (AMD Order)

Blended Cured�asi-Newton for Distortion Optimization • 1:13

Vertices Tetrahedra BCQN AQP Projected Newton

1.8K 6.3K 62 4.22 0.03M 262 15.97 0.03M 41 22.01 0.61M

3.0K 10.8K 63 7.02 0.07M 311 30.56 0.07M 42 39.61 1.35M

6.6K 25.6K 76 18.27 0.27M 342 79.51 0.27M 43 97.21 4.88M

16.0K 66.6K 130 74.90 1.09M 408 226.02 1.09M 44 282.64 21.04M

31.7K 137.2K 151 168.59 3.29M 475 517.32 3.29M 44 644.97 65.06M

65.3K 291.6K 178 429.48 10.44M 546 1,346.30 10.44M 44 1,673.90 214.44M

133.1K 608.4K 274 1,391.70 31.25M 538 2,640.00 31.25M 44 15,650.00 695.33M

261.9K 1,219.5K 291 2,805.10 87.26M 685 7,300.00 87.26M 45 76,711.00 1,135.20M

535.7K 2,532.7K 352 7,930.60 270.73M 825 28,500.00 270.73M 45 1,104,480.00 3,078.80M

1,633.5K 7,873.2K 392 20,908.00 689.42M 919 88,215.00 689.42M * 9,672.17M

Iteration Timing(s) Fill-in Iteration Timing(s) Fill-in Iteration Timing(s) Fill-in

Fig. 13. Three-Dimensional Deformation Scaling, Timing and Sparsity.
Performance statistics and memory use for increasing mesh sizes up to 7.8M
tetrahedra, comparing BCQN with AQP and PN. (CM does not extend to
3D.) We initialize a bar with a straight rest shape to start in a tightly twisted
shape, constraining both ends to stay fixed and then optimize over increasing
resolutions. For each method we report number of iterations to convergence
(characteristic norm < 10�3), wall-clock time (seconds) to convergence, and
the nonzero fill-in for the linear system solved by each method. We use * to
indicate out of memory for the computation on our test system; see §8 for
discussion.

Local Injective Initial

Local Optimum

Rest Shape

Front View Side View

Constraint Configuration

Fig. 14. Armadillo Deformation Test. We compare three-dimensional de-
formation optimizations of a 1.5M element tetrahedral mesh of the T-pose
armadillo with BCQN and PN. We constrain the armadillo’s feet to rest po-
sition, its hands to touch the ground and use the LBD method [Kovalsky
et al. 2015] to create a locally injective initialization for the solvers from the
starting constrained configuration. Here BCQN requires 393 iterations to
converge while PN converges in just 9. However, as BCQN is much cheaper
and more scalable per iterate it takes only 4,148 seconds, while PN spends
13,447 seconds. See Figure 8 for the comparison of fill-in and size.

J Bonet and AJ Burton. 1998. A simple orthotropic, transversely isotropic hyperelastic
constitutive equation for large strain computations. Computer methods in applied
mechanics and engineering 162, 1 (1998), 151–164.

Allan F Bower. 2009. Applied mechanics of solids. CRC press.

Example Vertices Triangles Energy
BCQN AQP

Iteration Timing Iteration Timing

Bull 17.9K 34.5K
ISO 169 11.82 † †
MIPS 200 24.08 † †
CONF 425 50.06 1,085 74.45

Camel 40.2K 78.1K
ISO 412 92.60 593 114.89
MIPS 3,344 821.57 66,479 12,281.00
CONF 9,196 2,067.60 81,100 15,712.00

Dino 24.6K 47.9K
ISO 162 30.43 950 98.66
MIPS 283 54.13 † †
CONF 156 29.53 883 98.02

Isis 188.1K 374.3K
ISO 347 404.63 353 366.01
MIPS 204 298.55 † †
CONF 104 166.65 611 612.98

Cow 3.1K 5.8K
ISO 78 1.14 † †
MIPS 239 3.29 323 3.98
CONF 59 1.05 108 1.23

Horse 20.6K 39.6K
ISO 104 12.93 643 57.40
MIPS 387 47.73 † †
CONF 519 68.22 5,552 523.97

Fig. 15. UVparameterization.Top row: 3Dmeshes for UV parametrization
with ISO, MIPS, and CONF distortion energies.Middle two rows: converged
maps and texturing from BCQN on ISO examples. Bottom: for each method
/ problem pair we report number of iterations to convergence (characteristic
norm < 10�3) and wall-clock time (seconds) to convergence. We use † to
indicate when AQP does not converge; see §8.5.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric
model for elastic deformations. ACM Transactions on Graphics (TOG) 29, 4 (2010), 38.

Renjie Chen and O�r Weber. 2017. GPU-accelerated Locally Injective Shape Deformation.
ACM Trans. Graph. 36, 6 (Nov. 2017), 214:1–214:13.

Renjie Chen, O�r Weber, Daniel Keren, and Mirela Ben-Chen. 2013. Planar Shape Inter-
polation with Bounded Distortion. ACM Transactions on Graphics (TOG) 32, 4 (2013),
108:1–108:12.

Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and
Update/Downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008),
14.

Sebastian Claici, Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. 2017. Isometry-
Aware Preconditioning for Mesh Parameterization. In Proceedings of the Symposium
on Geometry Processing.

Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. 2009. The Linear Complementarity
Problem. Society for Industrial & Applied Mathematics (SIAM).

Mathieu Desbrun, Mark Meyer, and Pierre Alliez. 2002. Intrinsic parameterizations of
surface meshes. In Computer Graphics Forum, Vol. 21. Wiley Online Library, 209–218.

A Fischer. 1992. A special Newton-type optimization method. 24 (1992), 269–284.
Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing locally injective mappings

by advanced MIPS. ACM Transactions on Graphics (TOG) 34, 4 (2015), 71.
N.J. Higham. 1992. Estimating the matrix p-norm. Numer. Math. 62 (1992).
Kai Hormann and Günther Greiner. 2000. MIPS: An e�cient global parametrization method.

Technical Report. DTIC Document.
Lianjun Jiang, Richard H Byrd, Elizabeth Eskow, and Robert B Schnabel. 2004. A precondi-

tioned L-BFGS algorithm with application to molecular energy minimization. Technical

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Barrier Type Energy

Reweighting

Adding Constraints

Working? Good Enough?

Original Proxy Enhanced Proxy

Per Iteration Cost

Don’t Give Up Easily

Acceleration

Acceleration

[Peng et al. 2018]

[Kovalsky et al. 2016]

[Liu et al. 2017]

Nesterov Acceleration

BFGS

Anderson Acceleration

BFGS

Blending

Blending

Comparison

SL-BFGS Ours

Constraint & Termination

Position Constraint

Stopping Criteria

Blended Cured�asi-Newton for Distortion Optimization • 1:5

Coarse mesh

Fine mesh

1e-41e-3Tolerance

Fig. 3. Standard termination measures,
e.g. the vertex-scaled gradient norm
above, are inconsistent across mesh, en-
ergy and scale changes.

However, an appropriate value
of � for a given application is
highly dependent on the mesh,
its dimensions, degree of re�ne-
ment, energy, etc. A common en-
gineering rule of thumb to deal
with re�nement consistency is
to instead divide the L2-norm of
rE by the number of mesh ver-
tices. However, as we see in the
inset �gure, this normalization
does not help signi�cantly, for
example here across changes in
mesh resolution for the 2D swirl
test; see Section 8.2 for more ex-
periments.

To avoid problem dependence, recent distortion optimization codes
generally either take a �xed (small) number of iterations [Rabinovich
et al. 2017] or iterate until an absolute or relative error in energy
|Ei+1 � Ei | and/or position kxi+1 � xi k are small [Kovalsky et al.
2016; Shtengel et al. 2017]. However, experiments underscore there
is not yet any method which always converges satisfactorily in the
same �xed number of iterations across varying boundary conditions,
shape di�culty, mesh resolution, and choice of energy. Measuring
the change in energy or position, absolutely or in relative terms,
unfortunately cannot distinguish between an algorithm converging
and simply stagnating in its progress far from the solution; again, there
is not yet any method which can provably guarantee any degree of
progress at every iterate before true convergence. Figure 4 illustrates
on the swirl example how a reference AQP implementation declares
convergence well before it reaches a satisfactory solution, when early
on it hits a di�cult con�guration where it makes little local progress.
To provide reassuring termination criteria in practice and to en-

able fair comparisons of current and future geometry optimization
problems we develop a gradient-based stopping criterion that remains
consistent for optimization problems even as we vary scale, mesh
resolution and energy type. This allows us, and future users, to set
a default convergence tolerance in our solver once and leave it un-
changed, independent of scale, mesh and energy. This likewise enables
us to compare algorithms without the false positives given by non-
converged algorithms that have halted due to lack of progress.

BCQNAQP

Fig. 4. In the 2D swirl example, BCQN with our reliable termination criterion
(right) only stops once it has actually reached a satsifactory solution. The
reference AQP implementation (le�) erroneously declares success early on
when it finds two iterates have barely changed, but this is due only to hi�ing
a di�icult configuration where AQP struggles to make progress.

4 BLENDED QUASI-NEWTON
In this section we construct a new quadratic energy proxy which
adaptively blends the Sobolev gradient with L-BFGS-style updates to
capture curvature information, avoiding the troubles previous quasi-
Newton methods have encountered in distortion optimization. Apart
from the aforementioned issue of a dense proxy incorrectly coupling
distant vertices in L-BFGS, we also �nd that the gradients for non-
convex energies with barriers can have highly disparate scales, causing
further trouble for L-BFGS. The much smoother Sobolev gradient dif-
fuses large entries from highly distorted elements to the neighborhood,
giving a much better scaling. The Laplacian also provides essentially
the correct structure for the proxy, only directly coupling neighboring
elements in the mesh, and is well-behaved initially when far from the
solution, thus we seek to stay close to the Sobolev gradient, as much
as possible, while still capturing valuable curvature information from
gradient history.

The standard (L-)BFGS approach exploits the secant approximation
from the di�erence in successive gradients, �i = rE(xi+1) � rE(xi)
compared to the di�erence in positions si = xi+1 � xi ,

r2E(xi+1)si ' �i

) r2E(xi+1)�1�i ' si ,
(6)

to update an inverse proxy matrix Di = H�1
i (approximating r2E�1

in some sense) so that Di+1�i = si . The BFGS quasi-Newton update
is generically

QNi (z,D) = Vi (z)TDVi (z) +
sisTi
sTi z
, Vi (z) = I � zsTi

sTi z
. (7)

We can understand this as using a projection matrix Vi to annihilate
the oldD’s action on z, then adding a positive semi-de�nite symmetric
rank-one matrix to enforceQNi (z,D)z = si . Classic BFGS usesDi+1 =
QNi (�i ,Di), whereas L-BFGS uses

Di+1 = QNi (�i , D̃i), (8)

where D̃i has the oldest QN update removed, and crucially represents
each D as a product of linear operators, rather than an explicit full
matrix. Only the last m {s,�} vector pairs (we use m = 5) along
with the initial D1 (we use the inverse Laplacian, storing only its
Cholesky factor) are stored; application of D is then just a few vector
dot-products and updates along with backsolves for the Laplacian.

4.1 Greedy Laplacian blending
Experiments show that far from the solution, the Laplacian is often
(although not always) a much more e�ective proxy than the L-BFGS
secant version: see AQP/SGD vs. L-BFGS in Figure 5. In particular,
the di�erence in energies � may introduce spurious coupling or have
badly scaled entries near distorted triangles. In this case if the energy
were based on the Laplacian itself (the Dirichlet energy), the di�erence
in gradients would be the better behaved Ls . This motivates trying to
update with Ls instead of �,

Di+1 = QNi (Lsi , D̃i). (9)

This would keep us consistent with Sobolev preconditioning, which
is often very e�ective in initial iterations. However, to achieve the
superlinear convergence L-BFGS o�ers, near solutions we wish to
come closer to satisfying the secant equation, and so aim to move

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Coarse

Fine

Scaled

1e-3 1e-4 1e-51e-3 1e-4 1e-5

Characteristic

Tolerance

krE(xi)k krE(xi)k

1:8 • Yufeng Zhu, Robert Bridson, and Danny M. Kaufman

tolerance for DPJ (see below), and never apply more than a maximum
of 20 DPJ iterations.
At each DPJ iteration j we check for termination with an LCP

specialized measure, the Fischer-Burmeister function [Fischer 1992]
FB(�j ,Mi�j + ci) evaluated as

FB(a,b) =

vut ’
k 2[1,m]

✓
ak + bk �

q
a2k + b

2
k

◆2
. (22)

As we initialize with �1 = 0, when pi is non-collapsing FB = 0, and
thus no line search �ltering iterations will be applied. Likewise, we
stop iterations whenever the FBmeasure is roughly satis�ed by either
a relative error of < 10�3 or an absolute error < 10�6.

Filtering thus applies a �xed maximum upper limit on computation
and performs no iterations when not necessary. Upon termination of
DPJ iterations, plugging our �nal � into (17) we obtain our update to
form the line search �ltered descent direction

p`i = pi +Ci�. (23)

As illustrated in Figures 2 and 7 the �lter’s small number of applied
iterations can make a dramatic di�erence in line search and so con-
vergence.

6 TERMINATION CRITERIA
Every iterative method for minimizing an objective function E(x)must
incorporate stopping criteria: when should an approximate solution
be considered good enough to stop and claim success? Clearly, in the
usual case, where the actual local minimum value of E(x) is unknown,
basing the test on the current value of E(xi) is futile. As noted in
Section 3.4, stopping when successive iterates are closer than some
tolerance is vulnerable to false positives (halting far from a solution),
as is using a �xed number of iterations. Although monitoring krEk
is robust, each individual problem may need a di�erent tolerance to
de�ne a satisfactory solution even when normalized by number of
vertices or total volume/area: see Figures 3 and 11. We thus propose a
new way to derive and construct an appropriate, roughly problem-
independent, relative scale for a gradient-basedmeasure for a stopping
criterion.

6.1 Characteristic gradient norm
All energies we consider are summations of per-element energy densi-
tiesW (·) computed from the deformation gradient Ft (x) and weights
vt , in each element t , as per equation (2). To simplify the following
we can then evaluate energy densities on the vectorized deformation
gradient asW

�
vec(Ft)

�
= W (Gtx), where Gt is the linear gradient

operator for element t . The full energy gradient is then

rE(x) =
’
t 2T

vtGT
t rW (Gtx). (24)

We wish to generate a characteristic value we can compare this gradi-
ent to meaningfully, with the same dimensions; we will do this with
each component of the above summation separately.
First observe that the deformation gradient, Ft , the argument to

W , is dimensionless and therefore rW has the same dimensions as
W , and even as the element Hessian r2W . For the simplest quadratic
energy densities, this Hessian has the attractive property of being
constant; we thus choose to use the 2-norm of the Hessian, evaluated

about the deformation gradient at rest (Ft = I), to get a representative
value for rW :

hW i = kr2W (I)k2. (25)
Second, note that the ith part of Gt for a triangle (respectively

tetrahedra) t containing vertex i will attain its maximum value for
�elds which are constant along the opposing edge (triangle) and
that value will be the reciprocal of the altitude. Up to a factor of 2
(3), this is the length (area) of the opposing edge (triangle) divided
by the rest area (volume), of the element, i.e. vt . Summing over all
incident elements, weighted by vt , we arrive at a characteristic value
for vertex i of `i equalling the perimeter (surface area) of the one-ring
of vertex i . We compute this value for all vertices, giving us the vector
`(T) = (`1, ..., `n)T 2 Rn , with one scalar entry per vertex.
The product of our energy and mesh values together form the

characteristic value for the norm of the gradient

hW ik`(T)k, (26)

where we take the same vector norm as that with which we evaluate
krE(x)k; we use the 2-norm in all our experiments. For all methods
we stop iterating when

krE(x)k  � hW ik`(T)k, (27)

given a dimensionless tolerance � from the user, which is now essen-
tially mesh- and energy-independent. See Figures 3, 10 and 11 as well
as our experimental analysis in Section 8 for evaluation.

7 THE BCQN ALGORTHIM
ALGORITHM 1: Blended Cured Quasi-Newton (BCQN)
Given: x1, E , � , T
Initialize and Precompute:

r = � hW i k`(T)k // Characteristic termination value (§6)
L, D L�1 // Initialize blend model (§4)
�1 = rE(x1), i = 1

while k�i k > r do // Termination criteria (§6)
p �D�i // Precondition gradient (§4)
// Assemble for DPJ iterations (§5):

C ra(xi)
M CTC, c CT p + a(xi)
S diag(M)�1, � 0

fb FB(�, M� + c) // LCP residual (Equation (22) in §5)
for j = 1 to 20 // Line-search �ltering (§5)

if fb < 10�6 then break end if
fb fbnext
� [� � 1

2S
�
CT (C�) + c

�
]+ // Parallel project (§5)

fbnext FB(�, M� + c)
if |fb � fbnext |/fb < 10�3 then break end if

end for
p` p +C� // Line-search �ltered search direction (§5)
� LineSearch(xi , p`, E) // Line search (§4)
xi+1 = xi + �p` // Descent step (§4)
�i+1 = rE(xi+1)
D Blend(D, L, xi+1, xi , �i+1, �i) // BCQN blending update (§4)
i i + 1

end while

Algorithm 1 contains our full BCQN algorithm in pseudocode. The
dominant cost, for both memory and runtime, is the Laplacian solve
embedded in the application of D, which again is not stored as a
single matrix, but rather is a linear transformation involving a few

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Stopping Criteria

Results

Results

Results

Results

Results

Results

AQP Ours

Q & A

