ICRA2018 Report
related work in Robotics and Automation

Liu Jian, Shan Dong University
Email: jianliu2006@gmail.com
Main Points

- ICRA Introduction
- ICRA 2018 Summary
- Robotic Grasping
ICRA Introduction

- ICRA: IEEE International Conference on Robotics and Automation
- Deadline: 9.15
- Conference Date: 20-25 May
- PaperPlaza: https://ras.papercept.net/conferences/scripts/start.pl
ICRA Introduction

- Exhibition: Academics and industry
• ICRA Introduction

• Exhibition: Academics and industry
ICRA Introduction

- Exhibition: Academics and industry
ICRA Introduction

- Exhibition: Academics and industry
ICRA 2018 Summary

- Submissions

2586 papers submitted
1981 submitted to ICRA
605 submitted to RAL
ICRA2018 Summary

- Submissions

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>613</td>
<td>USA</td>
</tr>
<tr>
<td>230</td>
<td>China</td>
</tr>
<tr>
<td>159</td>
<td>Germany</td>
</tr>
<tr>
<td>115</td>
<td>Japan</td>
</tr>
<tr>
<td>89</td>
<td>France</td>
</tr>
<tr>
<td>85</td>
<td>UK</td>
</tr>
<tr>
<td>83</td>
<td>Italy</td>
</tr>
<tr>
<td>82</td>
<td>South Korea</td>
</tr>
<tr>
<td>75</td>
<td>Australia</td>
</tr>
<tr>
<td>62</td>
<td>Canada</td>
</tr>
</tbody>
</table>
ICRA2018 Summary

- Presenting

- 1056 papers presented
- 40.8% acceptance rate
- 31 workshops
- 6 forums

![Accept rate vs Year](chart1)

![Presented papers vs Year](chart2)
ICRA2018 Summary

- Presenting

35 Award Papers (3%)

1. IEEE ICRA Best Conference Paper Award
2. IEEE ICRA Best Student Paper Award
3. IEEE ICRA Best Paper Award in Automation
4. IEEE ICRA Best Paper Award in Cognitive Robotics
5. IEEE ICRA Best Paper Award on Human-Robot Interaction (HRI)
6. IEEE ICRA Best Paper Award in Robot Manipulation
7. IEEE ICRA Best Paper Award in Medical Robotics
8. IEEE ICRA Best Paper Award on Multi-Robot Systems
9. IEEE ICRA Best Paper Award in Service Robotics
10. IEEE ICRA Best Paper Award in Robot Vision
11. IEEE ICRA Best Paper Award on Unmanned Aerial Vehicles
12. IEEE ICRA 2018 Award for the Most Influential Paper
ICRA2018 Summary

Presenting

Top 10 Keywords

<table>
<thead>
<tr>
<th>Rank</th>
<th>Keyword</th>
<th>Papers</th>
<th>Award Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deep Learning in Robotics and Automation</td>
<td>124</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Motion and Path Planning</td>
<td>107</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Localization</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>SLAM</td>
<td>71</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Learning and Adaptive Systems</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Multi-Robot Systems</td>
<td>61</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Autonomous Vehicle Navigation</td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Soft Material Robotics</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Mapping</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Optimization and Optimal Control</td>
<td>52</td>
<td>0</td>
</tr>
</tbody>
</table>
ICRA2018 Summary

Presentation by 3681 Authors

More than half of all authors are published in TOP 10 AREAS OF RESEARCH

<table>
<thead>
<tr>
<th>Number of AUTHORS in Top 10 Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Deep Learning in Robotics and Automation</td>
</tr>
<tr>
<td>2 Motion and Path Planning</td>
</tr>
<tr>
<td>3 Learning and Adaptive Systems</td>
</tr>
<tr>
<td>4 Localization</td>
</tr>
<tr>
<td>5 SLAM</td>
</tr>
<tr>
<td>6 Medical Robots and Systems</td>
</tr>
<tr>
<td>7 Soft Material Robotics</td>
</tr>
<tr>
<td>8 Sensor Fusion</td>
</tr>
<tr>
<td>9 Multi-Robot Systems</td>
</tr>
<tr>
<td>10 Autonomous Vehicle Navigation</td>
</tr>
</tbody>
</table>
Robotic Grasping
related work in Robotics and Automation
A good autonomous grasping strategy is able to ensure stability, task compatibility and adaptability to new objects.
Robotic Grasping

- Analysis Approach
 - Force closure
 - Precision grasp: contact points computation
 - Known Object: Model, Physical properties (gravity, friction coefficient)
 - Collision-free environment
 - Sensitive to uncertainty (disturbance)
Robotic Grasping

- Caging grasp
 - The target object cannot escape from the cage
 - Power grasp: contact surface
 - Robust to uncertainty: unknown object
 - 2D caging grasp (planar cage), 3D caging grasp (circle cage, sphere cage)
Robotic Grasping

- Data-driven approach
 - Robotic grasp of novel object via Deep Learning
 - Grasp representation: grasp rectangle (Manually label)
ICRA2018: Robotic Grasping Analysis Approach
Manipulation – grasping

- **Analysis approach:**

Grasping Objects Big and Small: Human Heuristics Relating Grasp-type and Object Size

Ammar Kothari, John Morrow, Ravi Balasubramanian, and Cindy Grimm

Robotics, Oregon State University, USA

- **Goal:** Understand human heuristics for mapping object size to grasp pre-shape
- Created a grasp taxonomy for a 3 finger manipulator based on human grasps
- Administered online surveys with training videos to gather shape space ranges for pre-shapes from people
- Used data to build confidence regions based on shape size to guide planners on choosing a grasp pre-shape

Given a pre-shape, largest and smallest objects that people believe can be grasped
• Contribution
 • Online data collection that captures human preference about what grasp types are preferred for different fundamental object shapes and sizes.

• Motivation
 • Few studies focused on human preference for robotic grasp.
 • Human preferences for grasp type based on object size and shape was previously unavailable to robotic grasp planning algorithms.
 • Reduce the search space.

Fig: Grasp taxonomy adapted for Barrett hand, based on GRASP (Human) Taxonomy [5]. Grasps with red boundaries, such as those utilizing the side of the finger as the main opposing force, were not achievable due to limitations with the Barrett hand’s kinematics. Four grasp preshapes were identified for the Barrett hand and were applied to all achievable grasp types. These grasp types are named at the bottom of the figure based on the main opposing forces and human inferred intent of each preshape grasp.

Grasping objects big and small: Human heuristics relating grasp-type and object size
Grasping Flat Objects by Exploiting Non-Convexity of the Object and Support Surface

Iason Sarantopoulos, Yannis Koveos and Zoe Doulgeri
Information Technologies Institute, Center of Research and Technology Hellas,
Thessaloniki, Greece

- Proposes a grasp strategy which exploits environmental contact for grasping domestic flat objects on support surfaces, inspired by human strategies.
- Assumes object point cloud availability.
- Considers cases where state-of-the-art grasp planners may not find a solution.
- Uses the non-convex geometry of the object-surface combination like in plates or handles.

Grasping a plate using the non-convex space (red points)
Manipulation – grasping

Contribution
- A contact exploiting grasp strategy for domestic flat objects placed or hinged on support surfaces.
- Support surface which are characterized by non-convexity in their object-surface combination
- Opposable grasp

Motivation
- Collision free space around target object.
- The flatter an object is, the more difficult to grasp it without colliding with the support surface.
- Humans compensated for the uncertainties introduced by impaired vision by using contact with the support surface.
Manipulation – grasping

Analysis approach:

Planning High-Quality Grasps using Mean Curvature Object Skeletons

Nikolaus Vahrenkamp, Eduard Koch, Mirko Wächter and Tamim Asfour
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

- Efficient generation of high-quality grasps in terms of robustness and force-closure rates
- Combined analysis of topological object information and local surface structure
- Different grasping strategies to generate precision and power grasps
- Evaluation with KIT and YCB real-world object model databases and several robotic hands
Manipulation – grasping

Part-based approach
- Generation of grasp candidates through object shape approximation with primitives
- Performance:
 1. Not overall objects or its parts might be well-represented by primitive shapes
 2. Perform poorly when used for grasping applications and propose instead to set a priori a number of elementary shapes, for instance, SQ(superquadrics) that cannot be further split
 3. Simple representation of the object will sacrifice potentially promising candidate grasps to poor geometry approximation

Box Decomposition

Primitive shape Decomposition

SQ Decomposition
Manipulation – grasping

- Part-based approach
 - Generation of grasp candidates through Reeb graph segments
 - Performance:
 1. the purely topology-based approaches do not take into account geometry features, is that it is not possible to discriminate between classes of objects that have the same topological structure

A 3D shape segmentation approach for robot grasping by parts Jacopo Aleotti, Stefano Caselli RAS2012
Manipulation – grasping

- Contribution
 - Skeleton-based grasp planner: Integrating Topological information and local surface structure to generate robust robotic grasp
 - Building mean curvature skeleton and segmenting the object to identify graspable regions
 - Grasp strategies: precision and power grasps

- Motivation
 - Force-closure approach: small disturbances lead to unstable grasping configuration.
 - Part-based approach (primitive shapes, superquadrics, Reeb graph segments, voxelized object presentation): randomized grasp generation

Planning High-Quality Grasps using Mean Curvature Object Skeletons
Manipulation – grasping

Analysis approach:

Transferring Grasping Skills to Novel Instances by Latent Space Non-Rigid Registration

Diego Rodriguez, Corbin Cogswell, Seongyong Koo and Sven Behnke
Autonomous Intelligent Systems, University of Bonn, Germany

- Transfer of grasping poses of novel objects by learning a latent shape space of the category of the object.
- The shape space is built registering training samples with CPD and subspace methods.
- Reconstruction of partially observed instances due to learned category-level information
- New instances can be generated through interpolation and extrapolation in the shape space
Contribution
- Propose an approach for transferring grasping skill from known objects to novel instances of an object category.
- Latent space non-rigid registration (Coherent Point Drift (CPD))
- Generate novel instances through interpolation and extrapolation in this shape space
- Novel shapes from partial views

Learning of the latent space
Analysis approach:

- Manipulation – grasping

Grasp Planning for Load Sharing in Collaborative Manipulation

Usama Tariq, Rajkumar Muthusamy and Ville Kyrki
Department of Electrical Engineering and Automation,
Aalto University, Finland

- Decentralized grasp planning for collaborative manipulation of unknown objects.
- Grasp analysis based on task specific minimization of grasp wrenches.
- On-line system for human-robot collaborative lifting proposed.
- Demonstrated optimal load sharing between agents during manipulation.
Manipulation – grasping

- Contribution
 - Robot grasp planning for load sharing
- Motivation
 - the load sharing has not been addressed from the perspective of planning cooperative grasps
Manipulation – grasping

- Human Grasp Detection and Decision Making

Grasp Planning for Load Sharing in Collaborative Manipulation
Analysis approach:

- **Manipulation – grasping**

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation

Balakumar Sundaralingam and Tucker Hermans,
School of Computing, University of Utah, USA

- We generate plans for moving from an initial fingertip grasp to desired fingertip grasp.
- We can generate plans on any arbitrary object, given the object’s mesh.
- Our method performs alternating optimization of fingertip relocation (finger-gaiting) and object reposing (in-grasp manipulation).
- We solve the alternating optimizations through sequential quadratic programming.

https://robot-learning.cs.utah.edu/project/in_hand_manipulation
Manipulation – grasping

- Problem Definition
 - In-hand regrasping, the problem of moving from an initial grasp to a desired grasp on an object using the dexterity of a robot’s fingers for precision grasps

- Motivation
 - Cluttered spaces limit grasp configurations

Initial Grasp Desired Grasp
Manipulation – grasping

- Problem Definition
 - Find a sequence of hand joint configurations to move to the desired grasp keeping the object in-hand

- OPT1: Optimization for finger gaits
 - Force-closure

- OPT2: Optimization for object reposing
 - In-grasp manipulation

- Alternating Optimization
Manipulation – grasping

- Contribution
 - An optimization based planner for relocating fingertips on an object surface
 - A sequence planner to regrasp an object in-hand from an initial fingertip grasp to a desired fingertip grasp.
 - Solution is collision-free and guarantees kinematic feasibility
 - Work on arbitrary object mesh

Geometric In-Hand Regrasp Planning: Alternating Optimization of Finger Gaits and In-Grasp Manipulation
Caging Loops in Shape Embedding Space: Theory and Computation

Jian Liu¹, Shiqing Xin¹, Zengfu Gao¹, Kai Xu², Changhe Tu¹ and Baoquan Chen¹

¹Shandong University, ²National University of Defense Technology, China

- A novel method for synthesizing multiscale caging grasps, based on topological analysis of shape-aware distance field in shape embedding space.
- A rigorous study on the relation between field topology and caging loops, based on Morse theory.
- A grasping system implemented with robot gripper, along with thorough evaluations and comparisons on both 3D printed and real-world objects.
This paper presented a topology-based approach that is applicable to objects with holes. It used non-trivial first homology group to identify graspable loops and measure the linking between the robot fingers and object with Gauss linking integrals.

Analysis:
1. The topological loop is non-trivial
2. It is too dependent on the topological information of a 3D object, but it ignores the geometric feature.
3. It is sensitive to quality of point cloud.

• Manipulation – grasping

Geometry or topology based 3D caging grasp

This paper proposed an idea of using geodesic balls on the object's surface in order to approximate the maximal contact surface between a grasp and an object. Two types of caging grasps are developed: circle caging and sphere caging, where circle caging means wrap almost completely around an elongated part of an object.

Manipulation – grasping

- Geometry or topology based 3D caging grasp

With the help of a Reeb graph and geodesic distance field, this paper considers geometry information and topology analysis to compute local minimal rings. Isocurves generated by geodesic distance field are used as initial rings. Then the initial rings are stretched for local minimal rings by topological branches based on the Reeb graph.

• Manipulation – grasping

- Geometry or topology based 3D caging grasp

- Manipulation – grasping
 - Challenge

 - Caging loops constrained on the target surfaces.
 - Model or holes may be too small for the fingers to pass through.
 - Non-convexity of the caging loop will lead to Gripper-object collision.
• Manipulation – grasping

 • Challenge

 • Caging loops should be defined in shape embedding space.
 • Feasible grasp would be enclosing the object with a loop encompassing multiple handles.
Manipulation – grasping

Overview

An overview of our caging loop based grasping system. (a) Our system setup, composed of one robotic arm and two depth cameras. (b) The incomplete point cloud scanned by the two depth cameras. (c) The r-offset surface of the reconstructed target object that defines the grasping space. (d) A p-based distance field and two Morse saddle points (blue). (e) Two caging loop candidates induced by the two Morse saddle points. (f) The yellow loop is filtered since it is far from being locally shortest at the base point (red). (g) A simulation of grasping. (h) Real grasping conducted by our system.

Manipulation – grasping

Results

Test on High-genus Models in Various Sizes
Test on Models with Various Levels of Noise and Geometric Feature
Test on Real Objects

Manipulation – grasping

Summary

- Special tasks, target object
- Dynamic grasp (human, shape-aware)
ICRA2018: Robotic Grasping Data-driven Approach
Manipulation – perception, learning

- Contribution
 - Deep learning approach to robotic grasping of unknown objects
 - Suitable grasp pose from multiple grasping/approach direction and wrist orientation.

- Motivation
 - Limitation of Data-driven approach:
 1) They neither account for stability nor feasibility of the grasp
 2) Grasping/approach direction and wrist orientation
 3) Design types of end-effectors

(a) Grasping directions

(b) Wrist orientations

Learning Object Grasping for Soft Robot Hands - MIT
Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations – Google Brain
Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning
Grasping of Unknown Objects using Deep Convolutional Neural Networks based on Depth Images - KIT
Grasping of Unknown Objects using DCNNs based on Depth Images

Philipp Schmidt, Nikolaus Vahrenkamp, Mirko Wächter and Tamim Asfour
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

- Deep learning approach for grasping unknown objects based only on depth image as input
- Output: Full end-effector poses with arbitrary approach directions
- Training data generated using analytical grasp planner – scalable!
- Evaluation using the KIT, YCB object model datasets and a big data grasping database in simulation and in robot experiments
• Manipulation – perception, learning

■ Problem Identify
- Estimating suitable grasp configuration of unknown objects with partial view using Deep learning approach

■ Strategy
1. Training: Closure grasps by analytic grasp planners + simulation

Known objects Grasp planner Multi-view + grasp pose
Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations

Xincheng Yan*, Jasmine Hsu¹, Mohi Khansari², Yunfei Bai², Arkanath Pathak¹, Abhinav Gupta¹, James Davidson¹, Honglak Lee¹
¹Google, ²X Inc, *University of Michigan

Learning grasping interactions from demonstrations with deep geometry-aware representations. First, we learn to build mental representation by reconstructing the 3D scene with 2.5D training data. Second, we learn to predict grasping outcome with its internal representation.
Manipulation – perception, learning

- Problem Identify
 - Estimating suitable grasp configuration of unknown objects with partial view using Deep learning approach

- Strategy
 1. Training: Closure grasps by grasp physical engine + simulation

Learning 6-DOF Grasping Interaction via Deep Geometry-aware 3D Representations – Google Brain
Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning

Jeffrey Mahler1, Matthew Matl1, Xinyu Liu1, Albert Li1, David Gealy1, and Ken Goldberg1,2

1Dept. of EECS, UC Berkeley \quad 2Dept. of IEOR, UC Berkeley

- We propose a compliant suction contact model for (1) the formation of a vacuum seal and (2) the ability to resist external wrenches.
- We use the model to generate Dex-Net 3.0, a dataset of 2.8 million point clouds, suction grasps, and grasp robustness labels.
- We train a deep Grasp Quality Convolutional Neural Network (GQ-CNN) on Dex-Net 3.0 to classify robust suction targets in point clouds.
- Grasps planned with the GQ-CNN achieve up to 98\% success on novel objects in experiments with an ABB YuMi.
Manipulation – perception, learning

Problem Identify
- Estimating suitable grasp configuration of unknown objects with partial view using Deep learning approach

Strategy
1. Training: robust suction grasps by physical analysis (seal formation & resist gravity) + simulation

Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic Model and Deep Learning
Learning Object Grasping for Soft Robot Hands

Changhyun Choi, Wilko Schwarting, Joseph DelPreto, and Daniela Rus

Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology, USA

- A 3D deep convolutional neural network (3D CNN) approach for grasping unknown objects with soft hands.
- Our soft hands guided by the 3D CNN algorithm show 87% successful grasping on previously unseen objects.
- Comparative experiments show the robustness of our approach with respect to noise and occlusions.

Successful example grasps of our 3DCNN approach
Manipulation – perception, learning

• Problem Identify
 • Estimating suitable grasp configuration of unknown objects with partial view using Deep Learning approach

• Strategy
 2. Training: trial-and-error scheme (point cloud + physical grasp pose)
Manipulation – grasping

- Summary
 - Robust/feasible grasp configuration
 - New types of robot hand
Thank you!