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Introduction

Nash embedding theorem [Nash 1954; Kuiper 1955]:

Max
is mapped to
1.0
@)
Original Riemannian manifold, i.e., 2D Higher dimensional Euclidean

embedded manifold, i.e., 3D
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Existing work on embeddings

. Matljlferlrollatical community (theoretical work): isometric embedding for Riemannian
manifolds

[Gromov and Rokhlin 1970; Hong 1993; Han and Hong 2006; Borrelli et al. 2012; Gromov 2017] ...

e Computer graphics community: surface meshing by embedding
[Cafnas and Gortler 2006; Boissonnat et al. 2008; Kovacs et al. 2010] ...

* Recent closest related work:
» Implicit embedding: Particle-based anisotropic meshing [Zhong et al. 2013]

» Explicit embedding:
U 3D embedding / immersion [Panozzo et al. 2014; Chern et al. 2018]
U 5D or 6D embedding [Dassi et al. 2014, 2015, Lévy and Bonneel 2012]
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Motivations

Output

2- or 3-
manifold

Riemannian
metric

Self-intersection free
high-dimensional Euclidean embeddings

Surficial Volumetric

&
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Contributions

The proposed Euclidean embedding formulation: to minimize the

deviation between the given metric and the deformation gradient of a
map from the original surface / volume to the high-d embedded one

Contributions:

* A general high-d embedding framework for arbitrary smooth Riemannian metric

 An effective computational algorithm for arbitrary topological surface and
volume manifolds

* The new computational strategies for anisotropic meshing algorithms in high-d
Euclidean space

SIGGRAPH2018




Our Method

f SIGGRAPH2018




Anisotropic Metric

* Anisotropy represents how distances and angles are distorted, which
can be measured by the dot product in geometry:

<a, b>y = a"'M(x)b

* A symmetric m x m matrix M(x) represents the metric:
M(x) = RX)TS(x)*R(x)

where the diagonal matrix S(X) is a scaling field, and the orthogonal
matrix R(X) is a rotation field
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Input Metrics

Directions

R(x)

_~

Scalings
S(x)
-~

e 2D analytic tensor 3D surface curvature 3D stress tensor
o CC tensor
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Metric through High-D Embedding

For an arbitrary metric field M(x) defined on the surface or volume

Q c R"(i.e., Riemannian 2- or 3-manifold):

Nash theorem [Nash 1954] states that there exists a high-d space R"

(i.,e., m<m), in which the surface or volume can be embedded with
Euclidean metricas Q c R"
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Importance of High-D Embedding

(1) More degrees of freedom: to deform and embed the given surface
or volume -> to obtain better embedding quality

(2) Avoid self-intersections: of the embedded surface or volume,
instead of embedding them in the original space (e.g., 2D or 3D)

(3) Simplify several Riemannian geometric applications: such as
computing high-quality anisotropic RVD and meshing on surface
and volume by using only isotropic Euclidean computations
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High-D Embedding Transformation

* For a triangle / tetrahedron j on the original surface / volume Q2 , and
high-d embedded €2 , the matrices of corresponding edge vectors are:

Surface: Volume:

Wj :[vjz—vjl,vjs—vjl] W.=[v. -V.,V. =V.,V. —V.

Wj :[vjz _\_’jl’\_’js _\711]

J1

J2
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High-D Embedding Transformation

* Their relationship can be represented as:
\7v_ =J.W,

where J is the Jacobian transformatlon matrix for triangle or
tetrahedronj, and J' iJi =M,

J

High-d embedding space

Qc R"

W, :.[ij ViV Vi J. W, =[v, -,V -V, ]
J1

Original space Q c R"

J3

J2




High-D Embedding Transformation

. Jj isan MxM matrix, and is represented as the product of a rotation
in the high-d embedding space, and a scaling and rotation in the
original space:

_ _ .o 0
| SR | — 0 0 -
Jj:Uj JOJ :Uij — 0o
- - 0(0]|0
) j Uj Sj R
mxm mxm 0 mxm
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High-D Deformation Gradient

* Intuitively, the transformation between the original surface / volume
and its high-d embedded one can be considered as the deformation.
It is represented by the field of the deformation gradient over the
surface / volume: T,

T,W, = \/_Vj ' A0

where it is intuitively shown by Sumner and Popovic¢ [2004]

Surface: Tj = \/_VJ.WJ.+ (Wj+: pseudoinverse of W;)

Volume: Tj — \/_VJ_WJ_‘1
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Embedding Optimization

* In essence, the high-d embedding transformation J and the high-d
deformation gradient T are the same

* We can formulate an expression to minimize the function E_

r]ele

Ep (V). V, ) =min )
=1

2
TJ'_JJ'HF
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Embedding Optimization

nele

Surface:  E, (V,,...,V, )=min Z
j=1

W;W; _Uij“i

neIe

Volume: E, (V,,...,V, )=mIn Z

j=1
3.85
1.0
g A 2D domain with A 3D embedding
P o anisotropic metric

_ 1= 2
W W, _UJQJHF
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Regularization Term

* The regularity term E, is a summation of the square of graph

Laplacian operations over every vertex in the embedding space:

—d  d
ZkeN(i)(Vk -V)

V y

Ereg (\_/1,...,\_/n ): : i (

where n,_, is the total number of vertices excluding those on the
boundaries. N (i) is the set of one-ring neighbors of vertex i

* To force the embedding to be C? smoothness
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Regularized Objective Function

* The embedding optimization includes: the similarity between two
transformations and the regularity used to achieve smoothness of the
embedding:

Etotal = Eem T IUEreg

where u is a weighting factor to balance the similarity and regularity
terms during optimization. The order of magnitude of u is 2 in our
experiments.
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Avoiding Intersections

* According to Nash embedding theorem, using the mapping  — Q:

1Im —m+l —m)

v — (v Jeey V

* We keep the original 2D / 3D coordinates to automatically avoid self-
intersections in the high-d embedding

* Note: the Euclidean distance in the high-d space will be at least longer
than or equal to the original mesh: we multiply the target Riemannian
metric M by a suitable global constant (scaling), if any stretching
factors are less than one

W SIGGRAPH2018




Numerical Solution Mechanism

* A non-linear problem with two unknown parameters: W; and U;

* An iterative method is used to compute the optimal solution

2500
2000 | 1
.| Embedding energy E,,,
| curve during opt|m|zat|on
500 | \ ‘
10 20 3.0 40 50
Iterations

A 2D domain with
anisotropic metric

A smooth 3D embedding
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Anisotropic Computations:
High-D Particle Optimization

* Extend 3D inter-particle energy formulation [Zhong et al.
2013] to high-d case:

where o =0.3¢ ‘ﬁ‘/n , n is the number of particles, d = 2 in surface
and d = 3 in volume, |Q}|denotes the area or the volume of the
embedded manifold

e Advantages:

» compute the isotropic particle distribution efficiently (inter-
particle formulation) Uniform particle

» search neighboring particles with efficient K-NN (Euclidean dis;[;i‘;t;‘;';j:uargf:'d
embedding space)
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Anisotropic Computations:
High-D Restricted Voronoi Diagram

* To identify the high-d Voronoi cells that overlap each triangle /
tetrahedron of the embedded surface / volume and compute their
Intersections

* The RVD computation is based on Lévy and Bonneel’s method [2012]
with the exact geometric predicates from [Lévy 2016], and then
extended in high-d space

* All these computations are done under the Euclidean metric, which is
easy and efficient
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Anisotropic Computations:
High-D Meshing

* Once the RVD is obtained, we can easily compute its dual graph,
Restricted Delaunay Triangulation (RDT)
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RVD and its dual mesh on a high-d embedded surface
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Anisotropic Computations:
Anisotropic RVD and Mesh

* To generate the final anisotropic RVD and mesh: using the barycentric
coordinates of each output site or vertex, we can back-project the RVD
and RDT from the high-d embedding space onto the original space
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Evaluations: Embedding Quality

* The relative edge length error is the percentage of the absolute
difference between the ground truth and the edge length of
computed embedding with respect to the ground truth

* Loy and LE5,: the maximal and average values of relative edge

length errors of all embedded triangles / tetrahedrons are evaluated
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Evaluations: Anisotropic Mesh Quality

a : d
|
I I Minimal quality of triangles / tetrahedrons
|
C I | Average quality of triangles / tetrahedrons
- I
o Affine-Transform : b cC Smallest value of the minimal (dihedral) angles
Q(trig,.) I Eucli I . .
- : uclidean space I Average value of the minimal (dihedral) angles
a d
Q(tet.,.,) | I Percentage of triangles / tetrahedrons with
d abcd I I their minimal (dihedral) angles smaller than 30°
I | (triangles) / 15° (tetrahedrons)
I b d : Angle histogram: distribution of all (dihedral)
b C I angles
| C I
e —— J
The quality of a triangle: G = 24/35 / (ph) The quality of a tetrahedron: G=12{9v*/) I
where S is the triangle area, p is its where V is the tetrahedron volume, [; ; is

half-perimeter, and h is the length of

the length of the edge
/‘ SIGGRAPH2018 ItS Iongest edge
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Importance of Higher Dimensions

Stretching ratio

9.4
3D embedding result [Panozzo
et al. 2014] of a Cyclide

- surface. There are 1146 self-
intersecting faces out of total
21,600 faces as shown in

1.6

green color

3D surface with anisotropic metric

3D embedding
(Green faces are self-intersecting)

Table 1. Statistics (i.e., numbers and percentages) of self-intersecting faces for
embeddings in 3D and high-d spaces on different surfaces.

Model Cyclidel Cyclide2 Kitten Gargo Upright Nefertiti
3D 1146 1751 1001 2405 3584 1385
5.31% 3.38% 2.50% 2.40% 2.38% 5.61%

» ‘f SIGGRAPH2018 High-D 0 0 0 0 0 0 .




Choosing the Dimension of the Embedding

Surface Examples

31

20‘ T T T T T T T
9.4 6
4D
- =
1.6
12} 1
§ o Stretching ratio
3 & 6D
~ g 100%
O\ 8 |
4l 8D 10D 0 20D
- 99 ~
| 1 1 1 1 | 0 1 1 1 1 1 1 1 |
4 6 8 10 12 14 16 4 6 8 10 12 14 16 18 20
Dimensions Dimensions
. Jrel _ rel _
8D: Lgyg = 1.83%, Linax = 25.81% 8D: L5, = 3.82%, Ligh, = 139.21%



Choosing the Dimension of the Embedding

Volume Examples

Q)

Stretching ratio

100%
100%
20D |
0 20D
: 2
0 1 1 1 | | 1 1 O | I 1 |
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20

Dimensions . )
Dimensions

8D: Ly, = 1.65%, Ljgh, = 17.54% 8D: L7gl, = 3.21%, LI¢k, = 65.01%

max
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3D Surface RVD and Meshing: Curvature Metrics

Stretching ratio € [1, 7]

Gargo: Anisotropic 3D surface RVD .
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Curvature Metr

3D Surface RVD and Meshing

tio € [1, 7]
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Sharp Feature and Boundary Models

Stretching ratio € [1, 10]
Upright CAD model
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Comparison with Other Embedding Mesh

Stretching ratio € [1, 6]
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3D Volume RVD and Meshing: Analytic Metrics
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3D Volume RVD and Meshing: Analytic Metrics

§ SIGGRAPH2018 Stretching ratio € [1, 20] defined by a highly nonlinear function with a cylindrical rotation field
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1000 -

N\
LCT , < U \\ - \\\ 2500 Gmm =0.003
[Fu et al. 2014] Q.\ ~ \\‘\‘\\\\\\ TZZZ 5 gaf: 8:3;

500 -

Stretching ratio € [1, 20]

4000

G,i,=0
3000 Ggyg =091
0,,,=0.6
2000 S 6,,, = 55.98
1000 % <15-=0.57%
0 J

Our method B )
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Note: both methods are computed

without sliver elimination process
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3D Volume RVD: Real Stress Tensor
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Stretching factor
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Conclusion

* A novel method for computing the self-intersection free Euclidean embedding in
arbitrary dimensions and using it in Voronoi diagram, surface and volume meshing
equipped with Riemannian metrics

* Limitations:
» The embedding computation is not a global approach
» The convergence of the embedding computation is not theoretically guaranteed

* Future work:
» Input metric with sudden discontinuities
» GPU-based parallel algorithm and implementation
» Simulations in medical imaging and computer animation
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