

RENDERING TUTORIAL III - MATERIALS AND SHADING

GOL YAN **ASSISTANT PROFESSOR UNIVERSITY OF CALIFORNIA, SANTA BARBARA**

闫今琪 助理教授、博士生导师 加州大学圣芭芭拉分校

Outline — Materials and Shading

* What is material in Graphics?
* How to render materials (shading)?
* Common materials
* Material acquisition / measurement
* Advanced materials

What is material? * Material is the reason of appearance

3D coffee mug model

Rendered

Rendered

What is material? * Material is how the light interacts objects

What is material? * Material is how the light interacts objects

Diffuse

What is this material? * Material is how the light interacts objects

What is material? * Material is how the light interacts objects

Glass

What is this material? * Material is how the light interacts objects

What is material? * Material is how the light interacts objects

Copper

Glossy

Aluminum

Let's make a material

Specular highlights

Diffuse reflection

Ambient lighting

- * Viewing direction: v
- * Light direction: I
- * Surface normal: n
- ***** Surface Parameters: (color, shininess)

Let's make a material — Diffuse Term

Light is scattered uniformly in all directions Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

Surface color is the same for all viewing directions

In general, light per unit area is proportional to $\cos \theta = \mathbf{I} \cdot \mathbf{n}$

Let's make a material — Diffuse Term independent of view direction illumination from source **n** $L_d = k_d \left(I/r^2 \right) \max(0, \mathbf{n} \cdot \mathbf{l})$ θ diffuse coefficient diffusely reflected light

Produces matte appearance

 k_d

Let's make a material — Highlight Term

Intensity depends on view direction • Bright near mirror reflection direction

Let's make a material — Highlight Term Close to mirror ⇔ half vector near normal • Measure "near" by dot product of unit vectors $\mathbf{h} = bisector(\mathbf{v}, \mathbf{l})$ $= \frac{\mathbf{v} + \mathbf{l}}{\|\mathbf{v} + \mathbf{l}\|}$ $L_s = k_s (I/r^2) \max(0, \cos \alpha)^p$ $\downarrow = k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$ specularly reflected light specular coefficient

Let's make a material — Highlight Term

Increasing p narrows the reflection lobe

Let's make a material — Highlight Term

$L_s = k_s \, (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$

Let's make a material — Ambient Term

Does not depend on anything

 Add constant color to account for disregarded illumination and fill in black shadows

reflected ambient light

Let's make a material — Blinn-Phong

Ambient + Diffuse

 $L = L_a + L_d + L_s$ = $k_a I_a + k_d (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$

+

Specular =

Blinn-Phong Model

Add some color — texture mapping * A texture is an image that specifies spatially-varying colors (Kd).

Applying the material

Shading

* In Merriam-Webster Dictionary

shad ing, ['seiding], noun

The darkening or coloring of an illustration or diagram with parallel lines or a block of color.

* By Lingqi

(1) The process of applying a material to an object.

(2) The process of **local** rendering.

Shading == local rendering No shadows, no indirect illumination

Shading methods

Shade each triangle (flat shading)

flat shading

- Triangle face is flat one normal vector
- Not good for smooth surfaces

Shade each vertex (Gouraud shading)

Gouraud shading

- Interpolate colors from vertices across triangle
- Each vertex has a normal vector

Shade each pixel (Phong shading)

Phong shading

- Interpolate normal vectors across each triangle
- Compute full shading model at each pixel
- Not Phong material model

In fact...

* As long as there are enough faces / vertices, any shading method works fine.

Textures can affect shading!

* Textures doesn't have to only represent colors * What if it stores the height / normal? # Bump / normal mapping * Fake the detailed geometry

Relative height to the underlying surface

Textures can affect shading! Displacement mapping — a more advanced approach Actually subdivides the mesh and modify the geometry

Bump/normal mapping

Displacement mapping

Physically-based materials

What is material?

* Recap: the Rendering Equation

outgoing radiance

emission

$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{H^2} L_i(x,\omega_i) f_r(x,\omega_i \to \omega_o) \cos\theta_i d\omega_i$

incident radiance

BRDF **(Bidirectional Reflection Distribution Function**)

$f_r(\omega_i, \omega_o)$ or $f_r(\theta_i, \phi_i, \theta_o, \phi_o)$

- * At any position, it represents how much light is reflected into each outgoing direction from each incoming direction
- * 4D function 2D for incoming direction 2D for outgoing direction

Material == BRDF

Microfacet BRDF

Microfacet model in the real world

Microfacet Theory

- * Rough surface
 - * Macroscale: flat & rough
 - * Microscale: bumpy & specular
- * Individual elements of surface act like mirrors
 - * Known as Microfacets
 - * Each microfacet has its own normal

microsurface

macrosurface

Air

Materia

Microfacet BRDF * Key: the distribution of microfacets' normals Concentrated <==> glossy • Spread <==> diffuse

Microfacet BRDF

* What kind of microfacets reflect wi to wo? (hint: microfacets are mirrors)

Fresnel Reflection / Term

Reflectance depends on incident angle (and polarization of light)

This example: reflectance increases with grazing angle

Fresnel Term (Dielectric, $\eta = 1.5$)

	1	_		r	
	0.9	-			
	0.8	ł			
	0.7	ŀ			
000	0.6	ł			
1 oto	0.6 0.5 0.4	ł			
č	0.4	-			
	0.3	-			
	0.2	-			-
	0.1	ł			
	0	0	10	20	30
					Ang

Microfacet BRDF: Examples

Isotropic / Anisotropic Materials (BRDFs)

- So far, Point light + Metal = Round / Elliptical highlight
- * What can we see inside an elevator?

Inside an elevator

Isotropic / Anisotropic Materials (BRDFs) * Key: directionality of underlying surface

Isotropic

Anisotropic

Surface (normals)

Anisotropic BRDF: Brushed Metal * How is the pan brushed?

[VRay renderer]

Anisotropic BRDF: Nylon

[Westin et al. 1992]

Anisotropic BRDF: Velvet

[Westin et al. 1992]

Anisotropic BRDF: Velvet

Material Capture (BRDF measurement)

Image-Based BRDF Measurement

Test sample

Camera positions

Measuring BRDFs: gonioreflectometer

Spherical gantry at UC San Diego

Tabular Representation

$(\theta_i, \theta_o, |\phi_i - \phi_o|)$

- * Store regularly-spaced samples in
 - * Better: reparameterize angles to better match specularities
- * Generally need to resample measured values to table
- * Very high storage requirements

MERL BRDF Database [Matusik et al. 2004] 90*90*180 measurements

Before we proceed

- * A brief summary
 - * Material == BRDF
 - * [Non-physically-based] Blinn-Phong material
 - * [Physically-based] Microfacet material
 - * Material acquisition / measurement
 - * Shading methods
 - * Flat (triangle) / Gouraud (vertex) / Phong (pixel)
 - * Texture mapping, bump/normal/displacement mapping

Advanced materials (including state of the art research)

- * Detailed / glinty material (non-statistical BRDF)
- * Hair / fur (BCSDF)
- * Participating media
- * Translucent material (BSSRDF)
- * Cloth

*

- * Granular material
- * Procedural appearance

Detailed / Glinty material

Motivation

[Car rendered in NVIDIA Iray]

[Mouse rendered in Autodesk 3DS Max]

Real world is more complicated

[Real photograph of a car]

[Real video of a mouse]

Why details?

Microfacet model

Why details?

[Yan et al. 2014, 2016]

Why details?

[Yan et al. 2014, 2016]

Surface = Specular microfacets + statistical normals

$f(\mathbf{i}, \mathbf{o})$

 $= \frac{\mathbf{F}(\mathbf{i}, \mathbf{h})\mathbf{G}(\mathbf{i}, \mathbf{o}, \mathbf{h})\mathbf{D}(\mathbf{h})}{4(\mathbf{n}, \mathbf{i})(\mathbf{n}, \mathbf{o})}$

NDF: Normal Distribution Function

Statistical NDF vs. Actual NDF Distribution of Normals (NDF)

Define details

isotropic noise normal map

Normal map resolution: ≈ 200K x 200K

Define details

Different details

Metallic flakes

Ocean waves

Detailed / Glinty Material: Application

[Rise of the Tomb Raider. 2016 Square Enix]

Hair and fur

Hair Appearance

Kajiya-Kay Model

[Image courtesy of Chiwei Tseng]

Kajiya-Kay Model

[Yuksel et al. 2008]

Marschner Model

[Image courtesy of Chiwei Tseng]

Marschner Model

• Glass-like cylinder

3 types of light interactions: R, TT, TRT (R: reflection, T: transmission)

[Marschner et al. 2003]

Hair Appearance Model: Application

[Final Fantasy XV. 2

RajmanGamingHD

uare Eni

Hair Appearance Model: Application

TAT

[Zootopia. 2016 Disney]

Even more advanced: Double Cylinder Model

[War for the Planet of the Apes. 2017 movie] (2018 Oscar Nominee for Best Visual Effects)

Participating Media

Participating Media: Fog

Participating Media: Cloud

Participating Media

At any point as light travels through a participating medium, it can be (partially) absorbed and scattered.

Participating Media: Application

[Big Hero 6, 2014 Disney]

Participating Media: Application

[Assassin's Creed Syndicate. 2015 Ubisoft]

Participating Media: Demo

[Stomakhin et al. 2014]

Translucent Material (a specific participating medium)

Translucent Material: Jade

Translucent Material: Jellyfish

Subsurface Scattering

*Visual characteristics of many surfaces caused by light exiting at different points than it enters

*Violates a fundamental assumption of the BRDF

*Different from transparent

[Jensen et al 2001]

[Donner et al 2008]

Scattering Functions

due to incident differential irradiance at another point:

on the surface and all directions (!) $L(x_o, \omega_o) = \int_{A} \int_{H^2} S(x_i, \omega)$

BSSRDF: generalization of BRDF; exitant radiance at one point

 $S(x_i, \omega_i, x_o, \omega_o)$

Generalization of rendering equation: integrating over all points

$$(x_i, x_o, \omega_o) L_i(x_i, \omega_i) \cos \theta_i \, \mathrm{d}\omega_i \, \mathrm{d}A$$

[Jensen et al. 2001]

BSSRDF

[Jensen et al. 2001]

BRDF vs BSSRDF

BRDF

BSSRDF

[Jensen et al. 2001]

BSSRDF: Application

[Artist: Teruyuki and Yuka]

[Artist: Hyun Kyung]

https://cgelves.com/10-most-realistic-human-3d-models-that-will-wow-you/

[Artist: Dan Roarty]

Cloth

Cloth

- * A collection of twisted fibers!
- * Two levels of twist
- Woven or knitted

Cloth: Render as Surface

- Given the weaving pattern, calculate the overall behavior
- Render using a BRDF

[Sadeghi et al. 2013]

Render as Surface — Limitation

[Westin et al. 1992]

Cloth: Render as Participating Media

- Properties of individual fibers & their distribution -> scattering parameters
- Render as a participating medium

[Jakob et al. 2010]

[Schroder et al. 2011]

Cloth: Render as Actual Fibers

• Render every fiber explicitly!

[Kai Schroder]

Cloth: Application

[The BFG. 2016 Disney]

Granular Material

Granular Material

What is granular material?

[Meng et al. 2015]

Granular Material Can we avoid explicit modeling of all granules? - Yes with procedural definition.

Granular Material

[Meng et al. 2015]

Granular Material: Application

Procedural Material

Can we define details without textures?

> - Yes! Compute a noise function on the fly.

[Lagae et al. 2009]

Can we define details without textures?

- Yes! Compute a noise function on the fly.
- 3D noise ->
 internal structure
 if cut or broken

Can we define details without textures?

- Yes! Compute a noise function on the fly.
- Thresholding (noise -> binary noise)

Example:

if noise(x, y, z) > threshold: reflectance = 1else: reflectance = 0

Complex noise functions can be very powerful.

Complex noise functions can be very powerful.

Complex noise functions can be very powerful.

Lingqi Yan http://www.cs.ucsb.edu/~lingqi/

TIL

Thank

