


Rendering under environment lighting

 𝐢/𝐨: incoming/view directions

 Brute-force computation 
 Resolution: 6*64*64

 Needs 6*64*64 times for each point!

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 𝜌 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

BRDFlighting visibility



Precomputed Radiance Transfer (PRT)

 Introduced by Sloan in SIGGRAPH 2002

 Precomputed Radiance Transfer for Real-Time 
Rendering in Dynamic, Low-Frequency Lighting 
Environments [Sloan 02]



Basic idea of PRT [Sloan 02]

 Approximate lighting using basis functions
 𝐿 𝐢 ≈ σ 𝑙𝑖𝐵𝑖(𝐢)

 Precomputation stage
 compute light transport, and project to basis function space

 Runtime stage
 dot product (diffuse) or matrix-vector multiplication (glossy)

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 𝜌 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

light transportlighting



Diffuse Case

 Reduce rendering computation to dot product

𝐿 𝐨 = 𝜌න
Ω

𝐿 𝐢 𝑉 𝐢 max(0, 𝒏 ⋅ 𝐢) d𝐢

𝐿 𝐢 ≈෍𝑙𝑖𝐵𝑖(𝐢)

basis 

function

lighting 

coefficient
𝐿 𝐨 ≈ 𝜌෍𝑙𝑖න

Ω

B𝑖 𝐢 𝑉 𝐢 max(0, 𝒏 ⋅ 𝐢) d𝐢

𝐿 𝐨 ≈ 𝜌෍𝑙𝑖𝑇𝑖

Precompute



Basis functions 𝐵(𝐢)
 Spherical Harmonics (SH)

 SH have nice properties:

 orthonormal 

 simple projection/reconstruction

 rotationally invariant (no aliasing)

 simple rotation

 simple convolution

 few basis functions: low freqs

l=0 m=0

l=1 m=-1

l=1 m=0

l=1 m=1

l=2 m=1 l=3 m=-1 l=3 m=2 l=4 m=-2



Basis functions 𝐵(𝐢)
 Spherical Harmonics (SH)

 Light Approximation Examples

Low frequency



Basis functions 𝐵(𝐢)

 SH is orthonormal, we have:

න
Ω

𝐵𝑖 𝐢 ⋅ 𝐵𝑗 𝐢 d𝐢 = 𝟏 (𝐢 = 𝒋)

න
Ω

𝐵𝑖 𝐢 ⋅ 𝐵𝑗 𝐢 d𝐢 = 𝟎 𝐢 ≠ 𝒋



Basis functions 𝐵(𝐢)

 Projection to SH space

 Reconstruction

𝐿 𝐢 ≈෍𝑙𝑖𝐵𝑖(𝐢)

𝑙𝑖 = න
Ω

𝐿 𝐢 ⋅ 𝐵𝑖 𝐢 d𝐢

lighting lighting coefficients

Original space SH space

𝐿 𝐢 ≈ ෍𝑙𝑖𝐵𝑖(𝐢)



Precomputation
𝑇𝑖 ≈ න

Ω

B𝑖 𝐢 𝑉 𝐢 max(0, 𝒏 ⋅ 𝐢) d𝐢light transport

Basis 16

Basis 17

Basis 18

illuminate result

...

...

 No shadow/ shadow/ inter-reflection



Run-time Rendering

 Rendering at each point is reduced to a dot 
product

 First, project the lighting to the basis to obtain 𝑙𝑖
 Or, rotate the lighting instead of re-projection

 Then, compute the dot product

 Real-time: easily implemented in shader

𝐿 𝐨 ≈ 𝜌෍𝑙𝑖𝑇𝑖



Diffuse Rendering Results

No Shadows               Shadows            Shadows+Inter



Glossy Case

 Rendering: vector-matrix multiplication

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 𝜌 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

𝐿 𝐨 ≈෍𝑙𝑖𝑇𝑖(𝐨)
𝑇𝑖 𝐨 ≈ ෍𝑡𝑖𝑗𝐵𝑗(𝐨)

basis 

function

transport 

matrix

𝐿 𝐨 ≈ σ σ 𝑙𝑖𝑡𝑖𝑗 𝐵𝑗(𝐨)

≈ ∗
transport 

matrix

light coefficient
reflected radiance 

coefficient



Time Complexity

 #SH Basis : 9/16/25

 Diffuse Rendering

 At each point: dot-product of size 16 

 Glossy Rendering 

 At each point: vector(16) * matrix (16*16)



Glossy Rendering Results

No Shadows/Inter        Shadows               Shadows+Inter

• Glossy object, 50K mesh

• Runs at 3.6 fps on 2.2Ghz P4, ATI Radeon 8500



Interreflections and Caustics

* * *( ( | ))LS S D G P

LP

*( | )L D G P

none 1 bounce 2 bounces

caustics

interreflections

LGP

Transport Paths

Runtime is independent 

of  transport complexity



Arbitrary BRDF Results

Other BRDFs Spatially VaryingAnisotropic BRDFs



Results



Summary of [Sloan 02]

 Approximate Lighting and light transport 
using basis functions (SH)

 Lighting -> lighting coefficients 

 light transport -> coefficients / matrices 

 Precompute and store light transport

 Rendering reduced to:

 Diffuse: dot product

 Glossy: vector matrix multiplication



Limitations [Sloan 02]

 Low-frequency 

 Due to the nature of SH

 Dynamic lighting, but static 
scene/material

 Changing scene/material invalidates 
precomputed light transport

 Big precomputation data



Follow up works

 More basis functions

 dot product => triple products 

 Static scene => dynamic scene

 Fix material => dynamic material

 Other effects: translucent, hair, …

 Precomputation => analytic computation

 … 



More basis functions

 Spherical Harmonics (SH)

 Wavelet 

 Zonal Harmonics

 Spherical Gaussian (SG)

 Piecewise Constant



Wavelet [Ng 03]

 2D Haar wavelet

 Projection:
 Wavelet Transformation

 Retain a small number of 
non-zero coefficients 

 A non-linear 
approximation

 All-frequency representation



low frequency vs all frequency
Teapot in Grace Cathedral

All frequency (Wavelet)Low frequency (SH)



Relighting as Matrix-Vector Multiply
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Relighting as Matrix-Vector Multiply

1

2

3

N

P

P

P

P

 
 
 
 
 
 
  

M

11 12 1

1

21 22 2

2

31 32 3

1 2

 

M

M

M

N

N N NM

T T T
L

T T T
L

T T T

L
T T T

 
  
  
  
  
  
   

L

L

L
M

M M O M

L
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Non-linear Wavelet Light 
Approximation

Wavelet Transform
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Matrix Row Wavelet Encoding
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Matrix Row Wavelet Encoding



11 12 13 14 1

21 22 23 24 2

31 32 24 34 3

41 42 43 44 4

51 52 53 54 5

61 62 63 64 6

7

1 2 3 4

M

M

M

M

M

M

M

N N N N NM

T T T T T

T T T T T

T T T T T

T T T T T

T T T T T

T T T T T

T

T T T T T

 
 
 
 
 
 
 
 
 
 
 
  

L

L

L

L

L

L

M M M M O

L

Wavelet Transform

Matrix Row Wavelet Encoding



Wavelet Transform
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Matrix Row Wavelet Encoding
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Wavelet Transform

Matrix Row Wavelet Encoding
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Wavelet Transform

Matrix Row Wavelet Encoding
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Only 3% – 30% are non-zero 

Matrix Row Wavelet Encoding



Why Non-linear Approximation?

 Linear

 Use a fixed set of approximating functions 

 Precomputed radiance transfer uses 25 - 100 of 
the lowest frequency spherical harmonics

 Non-linear

 Use a dynamic set of approximating functions 
(depends on each frame’s lighting)

 In our case: choose 10’s - 100’s from a basis of 
24,576 wavelets



Overall Rendering Algorithm

 Pre-compute (per scene)

 Compute matrix in pixel basis

 Wavelet transform rows

 Quantize, store

 Interactive Relighting (each frame)

 Wavelet transform lighting

 Prioritize and retain N wavelet coefficients

 Perform sparse-matrix vector multiplication



Output Image Comparison

25 200 2,000 20,000

SH
w

av
el

et



Limitation

 Wavelet: not rotational invariant

 Re-projection at each frame

 Results in flicking 

 Only support dot-product operator

 Limited to diffuse or fix-view glossy 



Results



Zonal Harmonics [Sloan 05]

 circularly symmetric functions

 Subset of SH basis (m=0)

 Low-frequency

 Rotational invariant 

 Much more faster in rotation
than SH



Spherical Gaussian (SG) [Tsai 06]

 SGs (or Spherical Radial Basis Functions, SRBFs)

𝐺 𝐯; 𝐩, 𝜆 = 𝑒𝜆 𝐯⋅𝐩−1

bandwidthcenter

𝐩
1

0

𝐩

𝐩

varying center



Spherical Gaussian (SG) [Tsai 06]

 SGs (or Spherical Radial Basis Functions, SRBFs)

𝐺 𝐯; 𝐩, 𝜆 = 𝑒𝜆 𝐯⋅𝐩−1

bandwidthcenter

𝐩 𝐩
1

0

𝐩

increasing bandwidth



Mathematical Properties of SGs

 Closed-form integral 

 The integral of an SG is closed-form

න
Ω

𝐺 𝐯; 𝐩, 𝜆 d𝐯 =
2𝜋

𝜆
1 − 𝑒−2𝜆



Mathematical Properties of SGs

 Closed under multiplication

 The product of two SGs is also an SG

G 𝐯; 𝐩1, 𝜆1 ⋅ G 𝐯; 𝐩2, 𝜆2 = 𝑐G 𝐯;
𝜆1𝐩1 + 𝜆1𝐩2
𝜆1𝐩1 + 𝜆1𝐩2

, 𝜆1𝐩1 + 𝜆1𝐩2

Product

⋅ =

𝐺𝑖𝑠𝑜 𝐯; 𝐩1, 𝜆1 𝐺𝑖𝑠𝑜 𝐯; 𝐩2, 𝜆2



Mathematical Properties of SGs

 Closed under convolution approximately

 The convolution of two SGs is still an SG

න
Ω

𝐺 𝐯; 𝐩1, 𝜆1 ⋅ 𝐺 𝐯; 𝐩2, 𝜆2 d𝐯 ≈ 𝑐3𝐺 𝐩1; 𝐩2,
𝜆1𝜆2

𝜆1 + 𝜆2

Convolution

∗ =

𝐺𝑖𝑠𝑜 𝐯; 𝐩1, 𝜆1 𝐺𝑖𝑠𝑜 𝐯; 𝐩2, 𝜆2



Summary of SGs
 Rotationally invariant

 Lighting, BRDFs demand rotation

 Capable of representing all-frequency
signals
 All-frequency lighting/BRDFs

 Closed-form integral
 rendering is essentially integration [Kajiya 1986]

 Closed under multiplication
 multiplication of lighting, visibility and BRDFs

 Closed under convolution
 support for various applications

 SGs are non-orthogonal!



Lighting Approximation

 non-linear process: iterative  L-BFGS-B solver (slow)

𝐿 𝐢 ≈෍𝑙𝑖𝐺(𝐢; 𝐩i, 𝜆i)



BRDF Factorization [Wang 03, Liu 03]

 Precompute the factorization

𝜌 𝐢, 𝐨 ≈ ෍

m

𝑓m 𝐢 ⋅ 𝑔m 𝐨



Overall Rendering Algorithm

 Derivation: Factorizing BRDF

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 𝜌 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 ෍

m

𝑓m 𝐢 ⋅ 𝑔m 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

𝐿 𝐨 =෍

m

𝑔m 𝐨 න
Ω

𝐿 𝐢 𝑉 𝐢 𝑓m 𝐢 max(0, 𝒏 ⋅ 𝐢) d𝐢

Both represented using SGs

𝑇(𝐢)



Overall Rendering Algorithm

 Derivation: projection to SGs

 Timing: O(N*N*M), non-orthogonal

𝐿 𝐨 =෍

m

𝑔m 𝐨 න
Ω

𝐿 𝐢 𝑇(𝐢) d𝐢

𝐿 𝐢 ≈෍𝑙𝑖𝐺𝑖(𝐢) 𝑇 𝐢 ≈ ෍𝑡𝑗𝐺𝑗(𝐢)

non-linear approx. pre. scattered approx.

𝐿 𝐨 =෍

m

𝑔m 𝐨 ෍

𝑖,𝑗

𝑙𝑖𝑡𝑗න
Ω

𝐺𝑖 𝐢 𝐺𝑗(𝐢) d𝐢

analytic solution



Results



Piecewise Constant [Xu 08]
 Spherical Piecewise Constant Basis Function

(SPCBF)
 Split sphere into

regions

 Each region is 
represented by 
a constant

 Property
 All-frequency

 Rotation-Invariant

 Multi-product

 Fast projection



Piecewise Constant [Xu 08]

 Light Projection

 Bottom-up optimization



Piecewise Constant [Xu 08]

 Projection of visibility and BRDFs

 BRDF

○ using summed area table 

 Visibility

○ Using visibility distance table



Results



Comparison of Basis Functions

SH Wavelet SG SPCBF

Orthogonal √ √ × √

All-frequency × √ √ √

Rotation invariant √ × √ √

Multiple product √ √ √ ? √

Compact Representation √ √ √ ×



Triple Product

 Original PRT: light * light transport

 Triple Product

 … Multiple Product

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 𝜌 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

light transportlighting
Not Flexible

BRDF × cosinelighting visibility



Wavelet Triple Product [Ng 04]

* *



Wavelet Triple Product [Ng 04]

Basis Choice Number Non-Zero      

General (e.g. PCA) O(N 3)
Pixels O(N)
Fourier Series O(N 2)
SH O(N 5 / 2)
Haar Wavelets O(N log N)



Wavelet Triple Product [Ng 04]



SG Triple Product
 Analytic Computation

 The product of two SGs is also an SG

G 𝐯; 𝐩1, 𝜆1 ⋅ G 𝐯; 𝐩2, 𝜆2 = 𝑐G 𝐯;
𝜆1𝐩1 + 𝜆1𝐩2
𝜆1𝐩1 + 𝜆1𝐩2

, 𝜆1𝐩1 + 𝜆1𝐩2

Could be easily extended to multiple product

Product

⋅ =

𝐺 𝐯; 𝐩1, 𝜆1 𝐺 𝐯; 𝐩2, 𝜆2



SH Triple Product

 Precompute all triple products of SH basis

𝐶𝑖𝑗𝑘 = න
Ω

𝐵𝑖 𝐢 𝐵𝑗 𝐢 𝐵𝑘 𝐢 d𝐢

 Compute the product 
of two functions 
directly in SH space:

 Could be easily extended to multiple product

𝐿 𝐢 ≈෍𝑙𝑖𝐵𝑖(𝐢)

𝑇 𝐢 ≈ ෍𝑡𝑗𝐵𝑗(𝐢)

𝐿 𝐢 ⋅ 𝑇 𝐢 ≈෍𝑙𝑡𝑘𝐵𝑘(𝐢)
𝑙𝑡𝑘 =෍

𝑖,𝑗

𝑙𝑖𝑡𝑗𝐶𝑖𝑗𝑘

Original space SH space



Shadow Field [Zhou05]

 PRT

 Handle only static scenes

 Shadow Field

 Handle moving light sources 
& objects

 Rigid objects + dynamic 
scene configuration

 Capture SRF/OOF around 
lights/objects



6x16x16

samples

per sphere

16 spheres

8r

0.2r 16

16

Spherical Harmonics

OOFs: 384 KB

SRFs:     1 MB

Sampling & Compression (Low 
Frequency)



Rendering: Products

BRDF

***

OOF-1

***

OOF-3

**

SRF-4

=

Reflected

radiance
1

3

4



Results



SH Exponential [Ren 06]
 Shadow Field

 Rigid objects 

 Computation of SH 
multiple product is still 
costly

 SH Exponential 
 Dynamic, deformation scene (objects)

 Derive Exp/Log operators in SH space

 Convert costly multiple product to summation in 
log space



Blocker Geometry Approximation

 Using sphere sets

 Dynamically update
at each frame



Rendering Computation

 Multiple Product (a very big number)

 Approach

 Implement exp/log directly in SH space

 Much faster

Light * Self_Vis * Occlusion1 * Occlusion2 * …. * OcclusionN * BRDF ***

𝒇𝟏 ∗ 𝒇𝟐 ∗ ⋯∗ 𝒇𝒏

exp log𝒇𝟏 + log𝒇𝟐 +⋯+ log𝒇𝒏



Results



More Rendering Applications

 Translucent Rendering

 Hair Rendering

 BRDF Editing 

 Translucent Editing

 Hair Editing



Translucent Rendering [Wang05]

 Extend PRT to handle translucent materials

 Precompute the transport for multiple 
scattering and single scattering separately

𝐿 𝑥𝑜, 𝐨 = න
𝐴

න
Ω

𝐿 𝑥𝑖 , 𝐢 𝑆(𝑥𝑖 , 𝐢; 𝑥𝑜 , 𝐨)max(0, 𝒏 ⋅ 𝐢) d𝐢

𝑥𝑖

𝑥𝑜

BSSRDF

factorized single scattering

=
diffuse multiple scattering

+



Results

 Dynamic environment lighting

 Fix: geometry + materials

 Real-time



Hair Rendering [Ren 10]

 Extend PRT to handle hair rendering

 Support environment lighting 

• Single Scattering
- Self-shadowing
- Fiber scattering
- Transparency

• Multiple Scattering
• Natural Illumination



• Approximate 𝐿 𝐨 by N SGs

• Move T out from the integral

– small variation of T

Single Scattering Computation

𝐿 𝐨 = 𝐷න
Ω

𝐿 𝐢 𝑇 𝐢 𝑆 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

hair scattering func.self  shadow

𝐿 𝐨 = 𝐷෍

𝑗=1

𝑁

𝐿𝑗 ෨𝑇න
Ω

𝐺𝑗 𝐢 𝑆 𝐢, 𝐨 max(0, 𝒏 ⋅ 𝐢) d𝐢

Precompute as 4D table



Results

 Dynamic lighting, geometry

 Fix hair scattering parameters

 Interactive framerates



BRDF Editing [Ben-Artzi 06]

𝐿 𝐨 = න
Ω

𝐿 𝐢 𝑉 𝐢 max(0, 𝒏 ⋅ 𝐢) 𝜌 𝐢, 𝐨 d𝐢

light transportlighting

 PRT
 dynamic lighting + precompute light transport
 Fix: material + geometry

 PRT based BRDF editing
 dynamic material + precompute material transport
 Fix: lighting + geometry + viewpoint

material transport material



BRDF Editing [Ben-Artzi 06]

 Rendering Algorithm

 Precompute:

 Runtime: (viewing direction 𝐨 is fixed)

1D curve

 Approach: parameterize BRDF as 1D curve
𝜌 𝐢, 𝐨 = 𝜌𝑞 𝐢, 𝐨 𝑓 𝛾 𝐢, 𝐨

𝑓 𝛾 ≈෍𝑐𝑗 𝑏𝑗(𝛾)

wavelet basis

quotient term

𝑇𝑗 = න
Ω

𝐿 𝐢 𝑉 𝐢 max 0, 𝒏 ⋅ 𝐢 𝜌𝑞 𝐢, 𝐨 𝑏𝑗 𝛾 𝐢, 𝐨 d𝐢

𝐿 𝐨 ≈෍𝑐𝑗 𝑇𝑗



Results



BRDF Editing with interreflection [Sun06]

 dynamic lighting + viewpoint + material 

 Fix: geometry

 all-frequency one bounce interreflection

 Introduce PTT:  precomputed transfer tensors 



Results

 Interactive rates



Translucent Editing [Xu 07]

 Combine the ideas in “BRDF editing” and in 
“translucent rendering”

 dynamic dipole parameters + precompute 
material transport

 Compute single/multiple scattering separately

 Basis Function: piecewise linear



Results

 Real-time, environment lighting

 Fix: lighting 
+ geometry

 Changing 
scattering
parameters



PRT vs analytic integration

 PRT (Precomputation)
 Long precomputation time, large storage

 Bake geometry/material/lighting into 
precomputation, needs to fix them

 Analytic Computation
 No (or small) precomputation 

 Everything dynamic, could be run-time changed

Rendering Integral න
Ω

𝐿 𝐢 𝑉 𝐢 𝜌 𝐢 𝑑𝐢



 SG as a PRT basis [Tsai 2006]

 rendering with dynamic BRDFs [Wang 2009]

 frequency domain normal map filtering [Han 2007]

 rendering and appearance editing of hairs [Xu 2011]

 bi-scale BRDF editing  [Iwasaki 2012]

 real-time rendering of rough refractions [Rousiers 2012]

 one-bounce interreflection [Xu 2014]

 anisotropic spherical Gaussians [Xu 2014]
Reference SH Wavelet SG

SG based analytic Integration



Rendering with dynamic BRDFs [Wang09]

 static scene, dynamic lighting, dynamic BRDF

 BRDF: microfacet model

 parametric ↔ measured

 isotropic ↔ anisotropic

 glossy ↔ mirror-like



Algorithm Overview

Spherical Gaussians SSDF

o

Prefiltered Environment



Results



Single scattering

𝐿 𝜔𝑜 = 𝐷න
Ω

𝐿 𝜔𝑖 𝑇 𝜔𝑖 𝑆(𝜔𝑖, 𝜔𝑜) cos 𝜃𝑖 𝑑𝜔𝑖

• 𝐿 𝜔𝑖 : environment lighting

• 𝑇 𝜔𝑖 : self shadowing

• 𝑆(𝜔𝑖, 𝜔𝑜): hair scattering function

Rendering and appearance 
editing of hairs [Xu 2011]



Rendering and appearance 
editing of hairs [Xu 2011]
Single scattering

𝐿 𝜔𝑜 = 𝐷න
Ω

𝐿 𝜔𝑖 𝑇 𝜔𝑖 𝑆(𝜔𝑖, 𝜔𝑜) cos 𝜃𝑖 𝑑𝜔𝑖

• Approximate 𝐿 𝜔𝑖 by a set of SGs 𝐺𝑗(𝜔𝑖) [Tsai and Shih 2006]

𝐿 𝜔𝑜 ≈ 𝐷න
Ω

෍
𝑗
𝑙𝑗𝐺𝑗 𝜔𝑖 𝑇 𝜔𝑖 𝑆(𝜔𝑖, 𝜔𝑜) cos 𝜃𝑖 𝑑𝜔𝑖𝐿 𝜔𝑜 ≈ 𝐷෍

𝑗
𝑙𝑗න

Ω

𝐺𝑗 𝜔𝑖 𝑇 𝜔𝑖 𝑆 𝜔𝑖, 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖



Single scattering

• Approximate 𝐿 𝜔𝑖 by a set of SGs 𝐺𝑗(𝜔𝑖) [Tsai and Shih 2006]

• Move T out from the integral [Ren 2010]

𝐿 𝜔𝑜 ≈ 𝐷෍
𝑗
𝑙𝑗 ෨𝑇න

Ω

𝐺𝑗 𝜔𝑖 𝑆 𝜔𝑖, 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖𝐿 𝜔𝑜 ≈ 𝐷෍
𝑗
𝑙𝑗 න

Ω

𝐺𝑗 𝜔𝑖 𝑇 𝜔𝑖 𝑆 𝜔𝑖, 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖

Problem: 

evaluate scattering Integral

Rendering and appearance 
editing of hairs [Xu 2011]



Single Scattering Integral

 Previous Approach [Ren 2010]

 Precompute the integral into 4D table

 Our key insight 

 Is there an approximated analytic solution?  

 YES

○ Decompose SG 𝐺𝑗 𝜔𝑖 into products of circular Gaussians

○ Approximate scattering function 𝑆 𝜔𝑖, 𝜔𝑜 by circular Gaussians

න
Ω

𝐺𝑗 𝜔𝑖 𝑆 𝜔𝑖, 𝜔𝑜 cos 𝜃𝑖 𝑑𝜔𝑖



Results
 No precomputation

 all (geometry, lighting, hair scattering param.) dynamic



One-bounce interreflection [Xu 14]

 Aim at accurately and efficiently computing 
one-bounce interreflections with all-
frequency BRDFs

 SG-based representation of BRDFs and 
lighting

 A novel analytic rendering formula



One-bounce Interreflection Model

−𝐢

𝐫

𝐨

𝐱

𝐿x 𝐨 = න
Ω𝑇

𝜌x −𝐫, 𝐨 max −𝐫 ⋅ 𝐧x, 0 න
Ω

𝐿𝑙 𝐢 𝜌𝑇 𝐢, 𝐫 max 𝒊 ⋅ 𝐧𝐓, 0 d𝐢d𝐫

𝐧𝑇

𝐧x

Triangle 𝑇
(reflector)

receiver

Light 𝑙
Configuration:

• Single triangle reflector

• Distant lighting

• No occlusion between 

the light, the reflector, 

and the receiver

• Ignore textures on the 

reflector

• Uniform BRDF (reflector)



𝐿x 𝐨 = න
Ω𝑇

𝜌x −𝐫, 𝐨 max −𝐫 ⋅ 𝐧x, 0 න
Ω

𝐿𝑙 𝐢 𝜌𝑇 𝐢, 𝐫 max 𝒊 ⋅ 𝐧𝐓, 0 d𝐢d𝐫

One-bounce Interreflection Model

−𝐢

𝐫

𝐨

𝐱

𝐧𝑇

𝐧x

Triangle 𝑇
(reflector)

receiver

Light 𝑙

Represented by SGs

Approximated closed-form 

solution

Piecewise linear approximation

Analytically 

Evaluated !



Results



Limitation of SGs

 Representing real functions

 A mixture model of 𝒏 scattered
SGs are required

 Poor scalability
○ More anisotropic functions require more

SGs

 Making Trade-off
○ Larger 𝒏more accuracy, more cost

○ Smaller 𝒏 less accuracy, less cost

An example



Anisotropic SG [Xu 14]

𝐳

𝐱 𝐲

1

0

bi-tangenttangent lobe bandwidth for 𝐱-axis bandwidth for 𝐲-axis 

smooth term exponential term

𝐲

𝐱

3D view Top view (2D)

An ASG 

example with



ASGs

 Desired operators

 Closed-form integral

 Closed-form product

 Closed-form convolution



Integral of an ASG
 Integral

න
Ω

𝐺 𝐯 d𝐯

= න

𝜙=0

2𝜋

න

𝜃=0

Τ𝜋 2

𝑒−𝜆 sin𝜃 cos 𝜙 2−𝜇 sin𝜃 sin 𝜙 2
sin 𝜃 cos 𝜃 d𝜃 d𝜙

 Our approximation

න
Ω

𝐺 𝐯 d𝐯 ≈
𝜋

𝜆𝜇

 Accurate (error < 0.68%) when 𝜆, 𝜇 > 5



Product of two ASGs
 Our approximation: 𝐺 𝐯; 𝐴1 ⋅ 𝐺2 𝐯; 𝐴2 ≈ S 𝐳𝟑; 𝐳𝟏, 𝐳𝟐 ⋅

𝐺 𝐯; 𝐴3
 Validation

1st ASG 
𝐺 𝐯; 𝐴1

2nd ASG 
𝐺 𝐯; 𝐴2

Approximated 

product

Ground truth

product



Convolution of an ASG with an SG

 Our approximation: 𝐶 𝐩 ≈
𝜋

𝜆+𝜈 𝜇+𝜈
⋅ 𝐺 𝐩; 𝐱, 𝐲, 𝐳 , [

𝜈𝜆

𝜈+𝜆
,
𝜈𝜇

𝜈+𝜇
]

ASG

Convolution kernel 

(SG)

Approximated 

convolution

Ground truth

convolution



Results



Linearly Transformed Cosines [Heitz 18]

 Approximate BRDFs using  Linearly 
Transformed Cosines Functions

 analytical integration on spherical polygons



Misc

 Compression

 VQ, PCA, Clustered PCA [Sloan 03]

 Meshless [Lehtinen 08]

 Image space 

 Direct-to-indirect Transfer [Hašan 06]



Misc

 Neural network as a basis

 Radiance Regression Functions [Ren 2013]

 Deep Shading [Nalbach 2017]



Reading Materials

 SIGGRAPH 2005 Course , by Jan Kautz et al

 Precomputed Radiance Transfer: Theory and 
Practice
www0.cs.ucl.ac.uk/staff/j.kautz/PRTCourse/

 PRT survey, 2007, by Ravi Ramamoorthi

 Precomputation-Based Rendering

 EG STAR 2012 Report, by Ritschel et al

 The State of the Art in Interactive Global 
Illumination



Conclusion
 Precomputed Radiance Transfer

 Project light/transport to basis function space

 Precompute and save the transport 

 Efficient computing at run-time

 Various rendering applications/features
○ environment lighting, local lighting

○ BRDFs/ translucent 

○ Material editing 

○ Static/dynamic scenes

○ Interreflection

○ …



Thanks!

Questions? 


