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Goal: Realistic virtual humans
3Dwor|d\

\ Generation (+ clothing) / K Capture and Analysis /
Realistic 3D people models: Reconstruction from images:

- Move and look like real people - Accurate

- Easy to control and animate - Efficient

- Easy to fit to data - Robust



Goal: Realistic virtual humans

3D world\
%

\ Generation (+ clothing) \_ Capture and Analysis

L & ¢

Virtual/Augmented Reality = Computer Vision Pedestrian safety Medicine and
self-perception




a VIRTUAL HUMANS - MENTAL MODEL A

\ Pose and Shape Soft-tissue Clothing /

a AVATARS FROM CONSUMER CAMERAS - PERCEPTION h

\Video (consumer cameras) Depth camera Video + IMU /




Schedule

(e Virtual human models

o

— Kinematic Chains, Linear Blend Skinning, Blendshapes
— SMPL & Dyna
— ClothCap: Capturing people in clothing

~

J




What is a virtual human model?

3D scan Ground truth Model Model
with texture

with texture shape
TV
9 .

) f\ I

]\4(6’75—)7 ﬁ’ (I))—> 3D mesh
o —

pose shape texture Hyper-parameters to learn




A virtual human is a function
oV

i i
M(0, 8) M(0,5)




Kinematic Chains



How do we parameterize pose ?

 Parameterize every body part separately ?

X, oo = {Ro. to,... Ry, t
Ro,t() p { 0y LO N N}

Problems ?




How do we parameterize pose?




Rotation parameterization

e Rotations are composed of 9 numbers

* 6 additional constraints to ensure that
the matrix is orthonormal with positive
determinant

e Suboptimal for optimization



Rotation with Exponential Maps
J
Hu_fj H : Angle of rotation

u7j - scaled axis of rotation ,~
i,

Rotation obtained with Rodrigues formula:

AN

-~ ~ . R ~2 —
R =¢eY =7 + w;sin(||&;||) + @ (1 — cos(||w,]|)



Joint Rigid Body Motion

The transformation associated with a rotational joint is

__. Rigid Body Motion




Kinematic Chains




Kinematic Chains




Kinematic Chaing s

The coordinates of the point in the spatial
frame are:

I_)S — G(w_iaw_é7j17j2) — G(C‘_jl)jl)G(w_)Qa.jQ)pb



Pose Parameters

Given a set of joint locations
. [} [ T
J = (Jl""7£)

The pose defined as the vector
of concatenated part axis-angles

0= (&, ..., 0)"

Pons-Moll & Rosenhahn 2011
Model-based Pose Estimation. Looking at People.



Kinematic Chain Problems




Linear Blend Skinning

K
E; — Z wk,iG; (5; J)Ez
k=1

>\

Blend weights  Part transformations

Points transformed as blended linear
combination of joint transformation matrices



Linear Blend Skinning




Standard Skinning

Standard skinning produces vertices from...

|| — Rest pose vertices: T e R3V “

— Joint locations: J c R3&

— Weights: W e RIVXK

— Pose parameters: 0 c R3K




Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T ¢ R3V

— . X
— Joint locations: JcR°®

— Weights: W e RVxK

— Pose parameters: ¢ R3K



Standard Skinning

Standard skinning produces vertices from...

— Rest pose vertices: T ¢ R3V

— Joint locations: J c R3H

— Weights: W e RIVXE

— Pose parameters: 0 c R3K




Standard Skinning

Standard skinning produces vertices from...
— Rest pose vertices: T ¢ R3V
— Joint locations: J e R3*E

— Weights: W e RIVXK

" — Pose parameters: ) ¢ R3K \l



Skinning function

— Rest pose vertices: T e R
— Joint locations: J € R3K
— Weights: W e RVXK
— Pose parameters: § ¢ R3K

W(T,J, W, 5) — vertices



LBS problems




Blend Shapes



Solution: Blend Shapes

A blend shape is a set of vertex displacements in a

rest pose

* Pose blend shapes: correct for LBS problems

P = vec(

_Afbl Ayl Azl 1

_A.CL’N AyN AZN_

—> Offset 1
) e RN



Pose Blend Shapes

* With blend shape correction




How to predict Blend Shapes ?

* Animators sculpt it manually!

* Time consuming, does not scale

Can we learn them from captured real people ?




Problems

* How do we define pose blend shapes
Bp(0")

 How to set the skinning parameters “?
TecRY JeR*»r WeRVXE



More Problems

How do we model shape identity variations ?

LN



SMPL



ldea: Collect 3D scans from

M
MMM




and thousands of poses

et KN4
by e 14

1000’s of high-resolution scans of different shapes and poses




SMPL: A model of pose and shape

M(0, B;w) : RIS R3N

Latent parameters — vertices

M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M. Black SIGGRAPH Asia‘15



SMPL Philosophy

We aim for the simplest possible model
while having state-of-the-art performance

 Makes training easier
* Enables compatibility

46



SMPL Model Pipeline

[

Template Mesh




SMPL Model Pipeline

4 z
Template Mesh Shape
Blend Shapes




SMPL Model Pipeline

Template Mesh Shape Pose Given Pose
Blend Shapes Blend Shapes




SMPL Model Pipeline

Template Mesh Shape Pose Final Mesh
Blend Shapes Blend Shapes




Parameterized Skinning

Standard skinning W (T, J| W, ) — vertices

- SMPL model

M(6,5) = W(Ea(s,8),3(3), W, 8) — vertices

—

SMPL is skinning parameterized by pose
and shape [

51



SMPL: BS are a parametric
function of pose

* We parameterize the skinning equation by pose

—

W (T,J, W, 0)

v

Ww(ra@e),J,w,o)

52



Remember: Pose Blend Shapes

* With blend shape correction

53



Parameterized Skinning
W (T(0),J, W, 0) — vertices
T(0) = T + Bp(6)

 Rest vertices are linearin f(6)

_,)| /Each is a blend shape
Bp(6) = ) [il6)P;

54



Parameterized Skinning

« \What function 7(9) ?

» Simplest possible:

f(6)=6

55



Neck Rotation

Joint Angles

=




Parameterized Skinning

—

- What function f(6) 7

. |dea: we consider f(6) as the vectorized
joint rotation matrices

- Blend shapes are linear in rotation matrix
elements

57



Pose Blend Shapes

£(6)]

Bp(0) = ) fi(0)P;

Not a minus / \
f(0) = [é‘f}l . ..ég’}g é‘fff . ..é‘g;fg]
\ ] \ J

9 elements of the rotation matrix-> We learn 9xK=207 blendshapes .



Blend Shapes Prediction from Pose

.Y
-

Joint Angles SMPL




Joint Location Estimation

« How to get the joints J for a new shape?

« Joints are considered linear in rest vertices (much like in Allen
et al. '00)

J=J(T;,7)=JT

l

Joint regressor matrix

60



Joints Regression from Template Mesh




SMPL Additive Model

K
= 3, G0+ Bl + )

k=1
Blendweights Vertices Shape-bs Pose-bs

64



Parameterized Skinning

' SMPL model

(M (G, 5) = W ( 0),3(5), W, §) — vertices|

—

SMPL is skinning parameterized by pose
and shape [

65



SMPL

pose sl)}ape
(9 3:T,S,P,W,J)

Input Model parameters to
be learned from data

T Template (average shape)
S Shape blend shape matrix

D
)4%
J

Pose blend shape matrix
Blendweights matrix

Joint regressor matrix

66



DATA



Model Training

= agnn 37 M Frw) - l §
TY&“ L6
by e i1 S



A2

Average of shapes

/

b ] =

SNew,; | B

Shape blend shapes are
the first eigenvectors

72



/ [

=
Average of shapes Shape blend shapes matrix

Before doing PCA all shapes have to be in the same
pose (pose needs to be optimized)

73



SMPL Model




SMPL conclusions

Speed: fast run-time

Fidelity: superior accuracy to Blend-SCAPE,
trained on the same data

Compatibility: works in Maya, Unity, ...
Is publicly available for research purposes

Download: http://smpl.is.tue.mpg.de

78



Dyna: A model of how we jiggle

G. Pons-Moll,
J. Romero,
N. Mahmood,
M. Black
SIGGRAPH15



Raw 4D scans




Registration



Scan

Alignment



E(6,8) = » dist(s;, M(6,8)) + Eprior(6, 3)

s;ES

/.

Scan Model



)) + dist(A(v), M(6, 5)) +

Eprior (97 ﬁ)

Scan

Alignment

Model



http://dfaust.is.tue.mpg.de

MPI Dynamlc FAUST

F. Bogo

J. Romero

G. Pons-Moll
M. Black
CVPR’17 [Oral]



Pose Dynamic
Blend Shapes Blend Shapes DMPL




DOES NOT SCALE TO THE REAL

WORLD




Vision

Computer Vision + Computer Graphics + Learning

v Perception [ “Mantal Model J l
2D Input: images, video Model 3D world 2D Input
\ Parameters g -
; uj: .i;.:.“:l:.:g” | pose 0 sik * f id::‘ an
O NN 3D - Render
Shape IB Model —

clothing C M(9,5,¢)

/

Training data hard to l
obtain (or impossible)

L | Vet N4
R ITY G4



Just a scan!
- Un-ordered point cloud
- No control: can not change shape, motion, clothing

- Useless without further processing

G. Pons-Moll, S. Pujades, S. Shu, M. Black — SIGGRAPH ’17
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Overview

L

Input: scans +
garment priors

Sigl frame Segmentation
registration

“Multi-part
registration




Single Mesh Registration






_ Multi-part Mesh Registration

/{ﬂ\

\_ - : J
Cloth template

TA

SMPL Scan




Multi-part Mesh Registration

Template




Multi-part Mesh Registration

\Cloth
Template







E(Ha /67 V) — Edata(v) + ECpl(67 /67 V) =+
+ Eboundary (V) -+ Elap (V)




Retargeting Cloth to a New Body




Retargeting Cloth to a New Body




Retargeting Cloth to a New Body




Retargeting Cloth to a New Body










/hang et al. CVPR'17. BUFF http://buff.is.tue.mpg.de



Real Virtual Humans
http://virtualhumans.mpi-inf mpg.de/

Resources data and code available for research!
Open positions in the areas of computer vision, machine

learning and computer graphics with focus on analyzing
and modelling people




Schedule

D
D

D

e Capturing humans from consumer sensors

numan reconstruction from a video
human pose and shape from images

numan pose from Inertial Measurement Units (IM

~

)




Challenges in Capturing Humans from
Images and Video

 Depth ambiguities
e Articulation

* Clothing

e [llumination
 Background




Model Based Approaches

arg 1min dist(z (M (6, 3)), z)

3D world Image Z

Pons-Moll and Rosenhahn.
Model Based Pose Estimation 2011



Model Based Approaches

arg 1min dist(z (M (6, 3)), z)

3D world 2D Keypoints Z

Bogo et al. ‘16
Lassner et al. ’17



Model Based Approaches

arg min dist(2 (M (6, 8)), z)

Requires careful initialization
Optimization can be slow

Bogo et al. ‘16
Lassner et al. ’17



Learning Based Approaches

2D Input 3D Output

[ Training data hard to

obtain!




Remaining Problems

Current methods can not recover
personalized shapes: no clothing, hair,
appearance

Optimization can be slow
Optimization requires initialization
Lack of 3D data for learning methods



KVideo (consumer cameras)

Single Image

Video + IMU /




Video-Based Reconstruction of 3D People
Models

T.Alldieck, M.Magnor, W.Xu, C. Theobalt, G. Pons-Moall
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CVPR’18 [spotlight]



Goal: 3D Reconstruction of People from
2 Smgle Vldeo

" Y ‘-'._'.
5 p A




Prewous Work

H

[Pavlakos et al. ’18] [Kanazawa et al. "18] [Bogo et al. "15]




Key Idea: Extend Visual Hulls to Dynamic
Human Motion

Problem: standard visual hull requires a static object captured by multiple views

S
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How Can We Generalize It to Dynamic

on ?

Person is
moving!




How Can We Generalize It to Dynamic
Human I\/Iotlon ?

Estimate the
3D human
pose and
shape per
frame




_ Silhouette rays with
correspondences on
the surface



Key idea: transform the silhouette cones according to
the inverse of non-rigid motion

N




Ray in Canonical Frame Inverse of Articulated Motion



Optimize a Single Shape to Fit all
Unposed Silhouette Cones

arg min Feons(3,d)
8,d
/ \ Prior Terms:
Egata = Z p(V X1y —Tpy) - Symmetry

e - Prior on Shape

- Surface
Sum of point to line distances Smoothness


















| ... -
Code and data:
https://graphics.tu-bs.de/people-snapshot

=




Alldieck et al. 3DV ‘18




—e |

Partial Surface! (hollow on the occluded part

TRIANGLE
e

‘&,IFURFH‘

P
------
a®



Neural Body Fitting
Body Pose and Shape from 1 Image

arg min ||z(I, w) — z|

Output

SMPL

Training data hard to
obtain!

M(6,8)|

3D world 2D keypoi“mts Z

919) 8419211

Omran, Lassner, Pons-Moll, Gehler, Schiele
3DV’18, Best student paper award



Code is available at:
https://github.com/mohomran/neural body fitting




Input Representation

Input (2D)  Proxy representation  Output (3D)

If yes, which?

[Would an intermediate representation help?]

149



Input representation

3D ERROR (|N |V||V|) m UniteThePeople

150



How much 3D data is needed?

Experiment: given training data with 2D ground truth (keypoints)
vary size of subset that also has 3D ground truth (shape/pose)

3D error in mm

250

200

150 /
100

50

0
100 50 20 10 5 2 1 0

% of training data with 3D ground truth (besides 2D)

151



Are 2D annotations enough?

= (Example posebits:
Right hand above the hips? yes
Right foot in front of the torso? yes

; : : Left foot in front of the torso? no
= Left hand above the hips? yes

. Right hand above the neck ? no

Left foot to the left of the hip? no

2 Left hand to the left of the shoulder? no
! ) Right hand to the right of the shoulder? vyes
L 4 Right knee bent ? yes

, . Right foot to the right of the hip? no
x L. vy
__ ( Samples of poses conditioned on the posebits )

Posebits: pose descriptions ? Aa“ ﬁ
. J

Pons-Moll, Fleet and Rosenhahn. CVPR’14




Dense Correspondences

Regression Forest

» [ ] »
A . \
: j I#q .. ,1__._ I\ T;f{"d’nq;fq;!t
» | ittt st »

—

inferred dense
correspondence:

Taylor et al. CVPR’12

Pons-Moll et al.

- BMVC ’13 Best Science Paper Award
- IJCV15 — journal version



Motion Capture from Sparse IMUs

Acceleration

Orientation

IMU = Inertial Measurement Unit
(Xsens)



Sparse Inertial Poser

Automatic 3D Human Pose Estimation from
Sparse IMUs

Supplementary material

Eurographics'17
Paper ID 1112

T. Marcard, B. Rosenhahn, M. Black, G. Pons-Moll. Eurographics ’17 Best Paper Award



Climbing




Single Phone Camera and IMUs?




Recovering Accurate 3D Human Pose
from IMUs and a Moving Camera

von Marcard, T., Henschel R., Rosehnahn, Black, M., Pons-Moll, G.

T

‘.
‘ l;. : ;...‘ LSS S e
'S 5

/

Under review



Problem: limited datasets

trampoline locksmith

MPIl human pose

+ Variation
- Weak annotations

Humankva Human3.cM

+ 3D annotations
- Variation (very controlled
indoor setups)




A single moving camera and IMUs on the

person
2D Poses
L Assignment Joint Optimization
etk _..“L b 4y .4 & 1y S
| bt s
L it #i A A R’
> I SR
Model+TMUs | 3D Poses N <%“<. _ .
ol A R ||

Tt -age A




Person Identification

[

QLT B (LT L oy =
bt | e | e '

All 2D Poses Assigned 2D Poses







Full dataset available:
http://virtualhumans.mpi-inf. mpg.de/3DPW/




Not today...



LALALLLLLE
I

Generating People with GANs Multiple People (3DV’18)

C.Lassner, G. Pons-Moll, P. Gehler ICCV’17  D. Mehta, O. Sotnychenko, F. Mueller, Weipeng
Xu, S.Sridha, G.Pons-Moll, C. Theobalt

5

|

Shape and Motion from Markers Real-Time Monocular Performance Capture
N. Mahmood, G. Pons-Moll, M. Habermann, W. Xu, M. Zollhoefer,
Ghorbani, N. Troje, M. Black G.Pons-Moll, C. Theobalt



Deep Inertial Poser Learning to Reconstruct Fashion is taking shape
Human Pose from Sparselnertial H. Sattar, G. Pons-Moll and M. Fritz
Measurements in Real Time (WACV’18)

Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O.
Hilliges, G. Pons-Moll Sigg. Asia ‘16
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CONCLUSIONS

3D virtual humans are powerful for a number of applications

To achieve realism we need to learn digital humans by
capturing real ones

Clothing is one of the main missing components in current
statistical body models = capture from consumer cameras!

We need perception algorithms that reason about the 3D
world, not about pixels

168



Real Virtual Humans
http://virtualhumans.mpi-inf mpg.de/

Resources data and code available for research!
Open positions in the areas of computer vision, machine

learning and computer graphics with focus on analyzing
and modelling people




Resources, data, and code

Shape/cloth 3D avatar from RGB-video: https://graphics.tu-bs.de/people-snapshot
https://graphics.tu-bs.de/upload/publications/alldieck2018videopeople.pdf

Single image human pose and shape (code): https://github.com/mohomran/neural body fitting
3DPW (3D Poses in the wild): https://virtualhumans.mpi-inf. npg.de/3DPW/

SMPL: http://smpl.is.tue.mpg.de

DYNA: http://dyna.is.tue.mpg.de

CLOTHCAP (Tracking people in clothing with layers/parts): http://clothcap.is.tue.mpg.de

Shape under clothing (>11.000 cloth-people scans): http://buff.is.tue.mpg.de

DFAUST (40.000 scans and registrations): http://dfaust.is.tue.mpg.de

SIP — 3D pose from 6 IMUs:
https://ps.is.tuebingen.mpg.de/uploads file/attachment/attachment/345/sparselnertialPoser.pdf

Data driven physics: https://ps.is.tuebingen.mpg.de/publications/meekyoung-siggraph
DoubleFusion: Online 3D pose, shape, detailed geometry from depth

http://www.liuyebin.com/doublefusion/doublefusion.htm

Generative Model of People (Variational Autoencoder): http://files.is.tuebingen.mpg.de/classner/gp/
Multiple People 3d Pose (3DV’18): https://arxiv.org/abs/1712.0345

Detailed Human Avatars from Monocular Video:

https://virtualhumans.mpi-inf. mpg.de/papers/alldieck2018detailed/alldieck2018detailed.pdf




