Tsinghua University

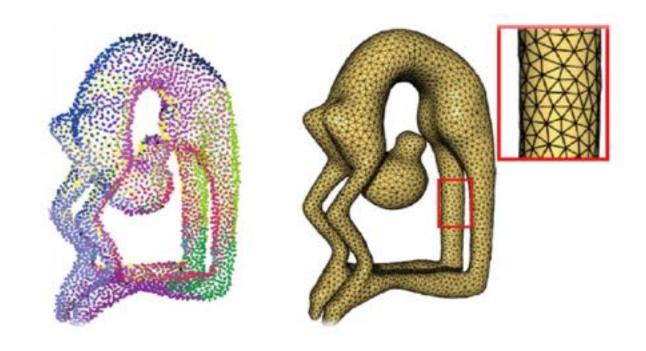
Surface Reconstruction Based on Modified Gauss Formula

Wenjia Lu, Zuoqiang Shi, Jian Sun, Bin Wang
Tsinghua University

Outline

- 1 Related Works
- 2 Gauss Surface Reconstruction
- Results and Comparisons
- 4 Conclusion

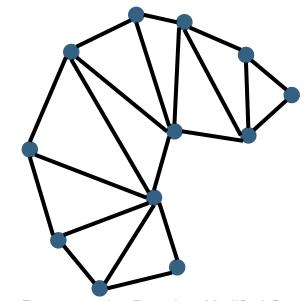
- Surface reconstruction from point clouds
 - Well studied
- Applications
 - Manufacture
 - Animation
 - Visualization
 - Etc.



Combinatorial methods

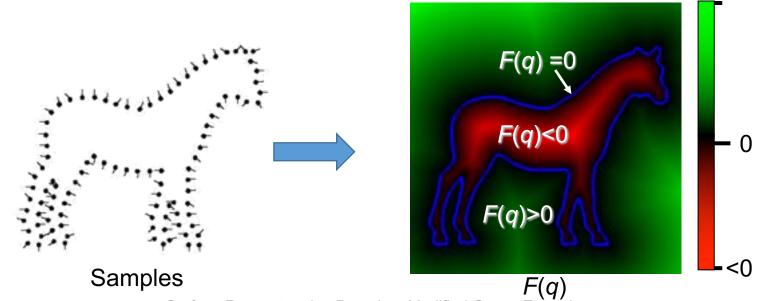
- Utilize (part of) the input sample points as vertices.
- Usually sensitive to noise and may produce jagged surfaces.

[Amenta et al. 2002] [Kolluri et al. 2004] [Xiong et al. 2014] etc...



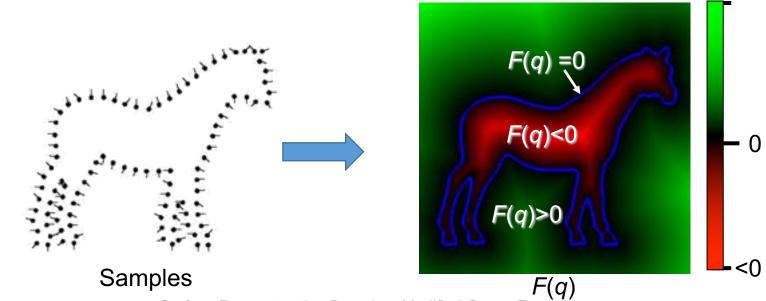
■Implicit methods

• Estimate implicit functions from the input samples and extract iso-surfaces to generate triangle meshes.



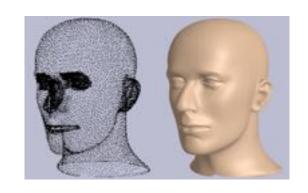
■Implicit methods

How to choose implicit function and how to solve it?



1

Related Works



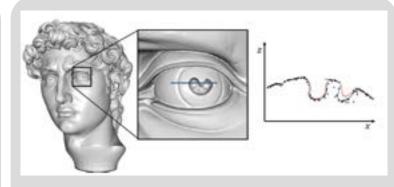
[Hoppe *et al.* 1992]

[Curless and Levoy 1996]

[Carr et al. 2001]

[Kazhdan et al. 2006]

[Calakli and Taubin 2011]

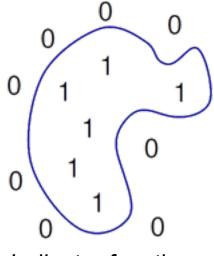


[Kazhdan et al. 2013]

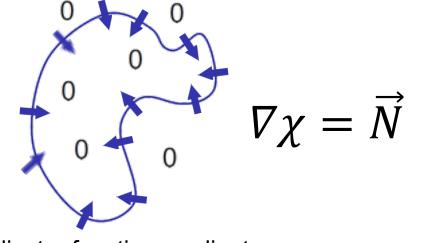
... ...

Indicator function

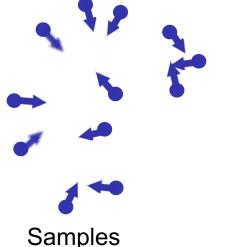
■ Indicator function :
$$\chi = \begin{cases} 0 & x \in R^3 \setminus \overline{\Sigma} \\ 1/2 & x \in \partial \overline{\Sigma} \\ 1 & x \in \Sigma \end{cases}$$



Indicator function



Indicator function gradients



1 Indicator function algorithms

- Poisson surface reconstruction [Kazhdan et al. 2006]
 - Convolution of the indicator function
 - Over smoothed
- Screened Poisson surface reconstruction[Kazhdan et al. 2013]
 - A scalar function fitting term
 - Over fitting

1.1 Signed distance function

- Signed distance function methods
 - A signed distance function is smooth near the surface
 - Easy to interpolate
 - Sensitive to noise

1 A hybrid solution

Observation

- Indicator function: robust to noise
- Signed distance function: easy to interpolate near the surface

Objective

- Away from the surface : indicator function
- Near the surface : signed distance function
- Balance between data fidelity and resiliency against noise

1 A hybrid solution

Our method

- Based on Gauss Lemma in the potential theory.
- Estimated directly from an explicit integral formula without solving any linear system.
- Easy to parallelize with small overhead.

Outline

- 1 Related Works
- **Gauss Surface Reconstruction**
- Results and Comparisons
- 4 Conclusion

2 Gauss Lemma

Let Σ be an open region in \mathbb{R}^3 , $\overline{\Sigma}$ denotes the closure of Σ . Consider the following double layer potential: For any $x \in \mathbb{R}^3$, $y \in \partial \Sigma$,

$$\chi(x) = \int_{\partial \Sigma} \frac{\partial G}{\partial \vec{N}(y)}(x, y) d\tau(y).$$

 $\blacksquare G$ is the fundamental solution of the Laplace equation, which can be stated explicitly as

$$G(x,y) = -\frac{1}{4\pi ||x-y||}.$$

2 Gauss Lemma

Let Σ be an open region in \mathbb{R}^3 , $\overline{\Sigma}$ denotes the closure of Σ . Consider the following double layer potential: For any $x \in \mathbb{R}^3$, $y \in \partial \Sigma$,

$$\chi(x) = \int_{\partial \Sigma} \frac{\partial G}{\partial \vec{N}(y)}(x, y) d\tau(y).$$

■ Note that

$$\frac{\partial G}{\partial \vec{N}(y)}(x,y) = -\frac{1}{4\pi} \frac{(x-y) \cdot \vec{N}(y)}{||x-y||^3}.$$

which we call the kernel function, and denote by K(x, y).

2 Gauss Lemma

■Then , the indicator function can be formalized as :

$$\chi(x) \approx -\frac{1}{4\pi} \sum_{\mathbf{y} \in \mathbf{P}} \frac{(\mathbf{x} - \mathbf{y}) \cdot \overrightarrow{\mathbf{N}}(\mathbf{y})}{\left|\left|\mathbf{x} - \mathbf{y}\right|\right|^3} \mathbf{y}.\mathbf{A}.$$

■Where y. A is a small region near the sample y , the set $\{y,A\}_{y\in P}$ cover the surface $\partial\Sigma$.

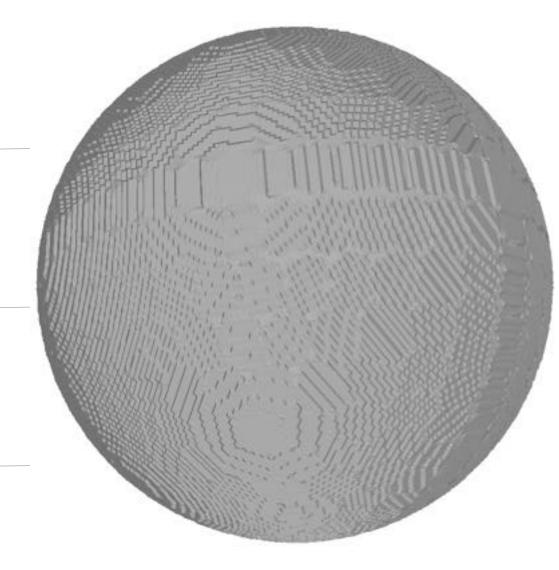
Indicator function :
$$\chi(x) = \begin{cases} 0 & x \in R^3 \setminus \overline{\Sigma} \\ 1/2 & x \in \partial \overline{\Sigma} \\ 1 & x \in \Sigma \end{cases}$$

DIFFICULTIES

2.1 Discontinuity

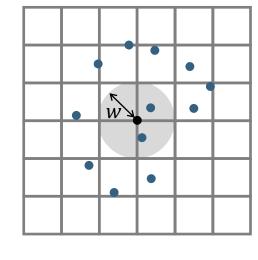
2.2 Singularity

Globalness



2.1 Discontinuity

■ Original kernel: $K(x,y) = \frac{(x-y) \cdot \vec{N}(y)}{4\pi \cdot ||x-y||^3}$



$$\mathbf{K}(x,y), \qquad ||x-y|| \ge w(x)$$

$$= \widetilde{K}(x,y) = \begin{cases}
-\alpha \frac{(x-y) \cdot \vec{N}(y)}{4\pi \cdot w^3(x)} & ||x-y|| < w(x), \alpha \in \{0,1\}
\end{cases}$$

2.1

Discontinuity

$$\tilde{\chi}(x) = \int_{B(x,w(x))\cap\partial\Sigma} \tilde{K}(x,y) d\tau(y) + \int_{\partial\Sigma \setminus B(x,w(x))} K(x,y) d\tau(y)$$

$$= \frac{1}{2} + \left(\frac{1}{2} - \frac{\alpha}{4}\right) \frac{d(x)}{w(x)} + \frac{\alpha d^3(x)}{4w^3(x)} + O(|w(x)|)$$

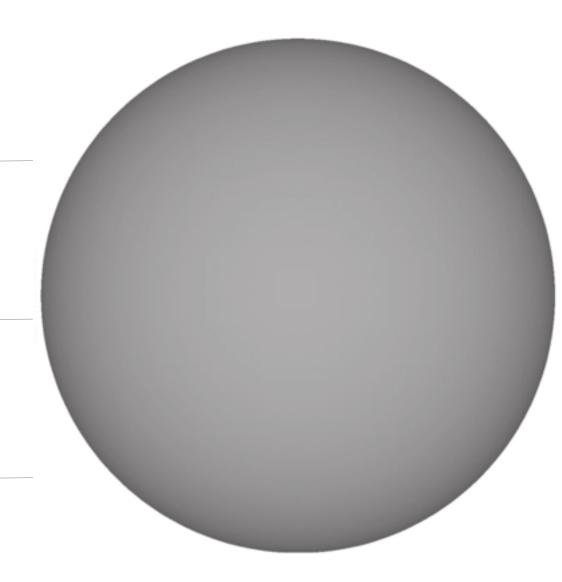
$$\tilde{\chi}(x) \approx \begin{cases} \frac{1}{2} + \frac{d(x)}{4w(x)} + \frac{d^3(x)}{4w^3(x)} & \alpha = 1 \\ \frac{1}{2} + \frac{d(x)}{2w(x)} & \underline{\alpha} = 0 \end{cases}$$
Distance to the surface

DIFFICULTIES

2.1 Discontinuity

2.2 Singularity

2.3 Globalness



DIFFICULTIES

Indicator function:
$$C(x,y) = -\frac{1}{4\pi} \frac{(x-y) \cdot \vec{N}(y)}{||x-y||^3} y. A$$

2.1 Discontinuity

Indicator Function Value

Distance to the Surface

2.2 Disk integration

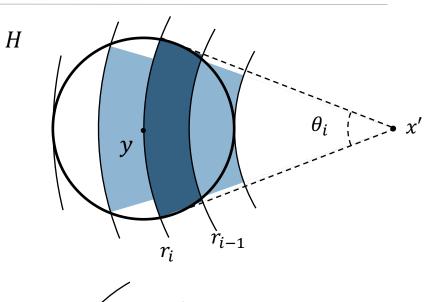
 $x \bullet$

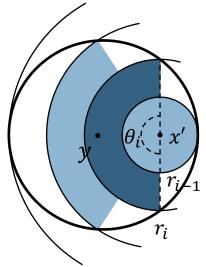
$$H \longrightarrow x' \bullet$$
Sample Point y

$$c_{i} = \int_{F_{i} \cap A(r_{i-1}, r_{i})} \tilde{K}(x, y) dy$$

$$= -\frac{1}{4\pi} \int_{0}^{\theta_{i}} \int_{r_{i-1}}^{r_{i}} \frac{d}{(d^{2} + r^{2})^{3/2}} r dr d\theta$$

$$= \frac{\theta_{i} d}{4\pi} \left(\frac{1}{\sqrt{d^{2} + r_{i-1}^{2}}} - \frac{1}{\sqrt{d^{2} + r_{i}^{2}}} \right)$$





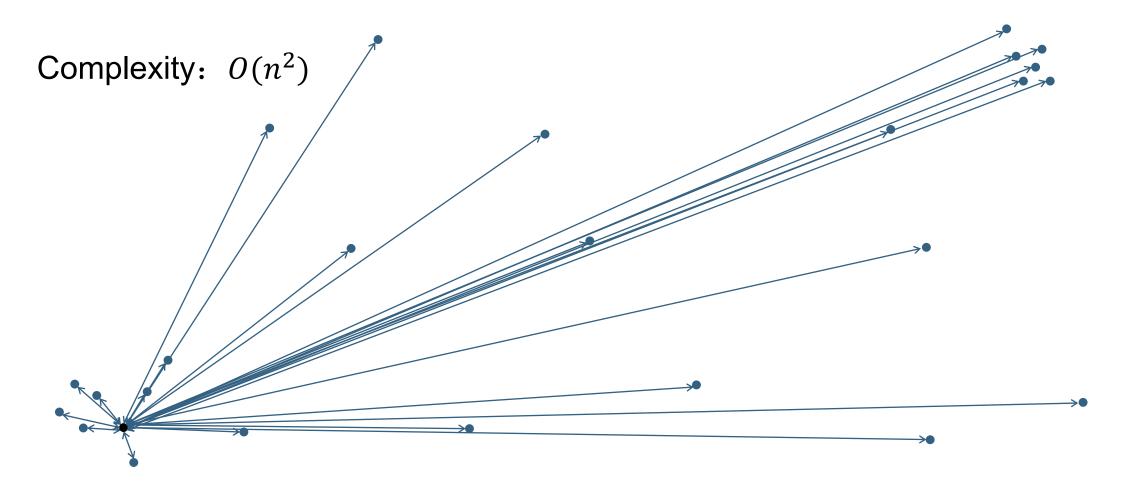
DIFFICULTIES

2.1 Discontinuity

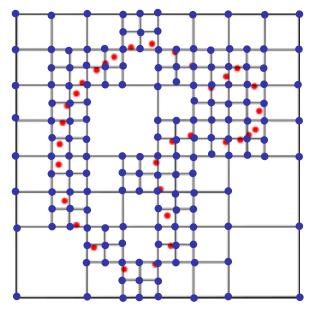
2.2 Singularity

2.3 Globalness

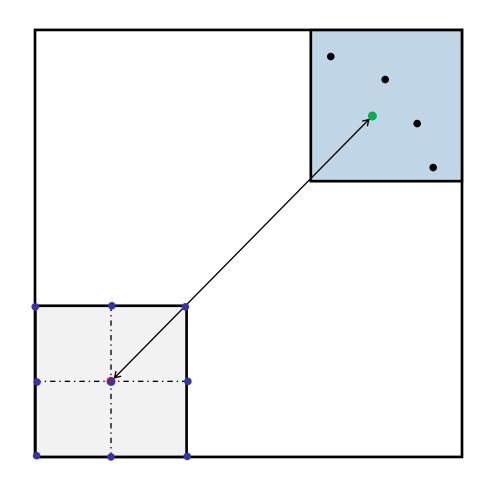
2.3 Globalness



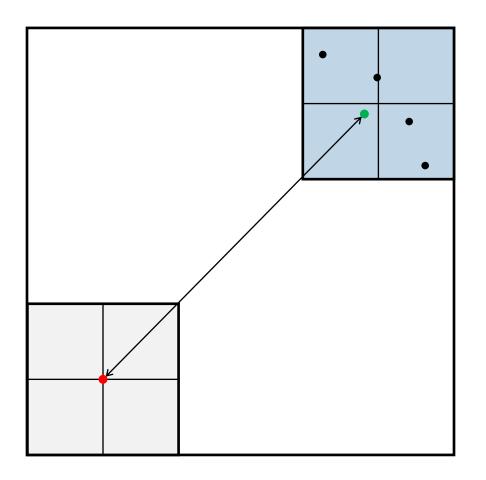
- Data Structure : Adaptive Octree
- Objective: Estimate function value for each cell

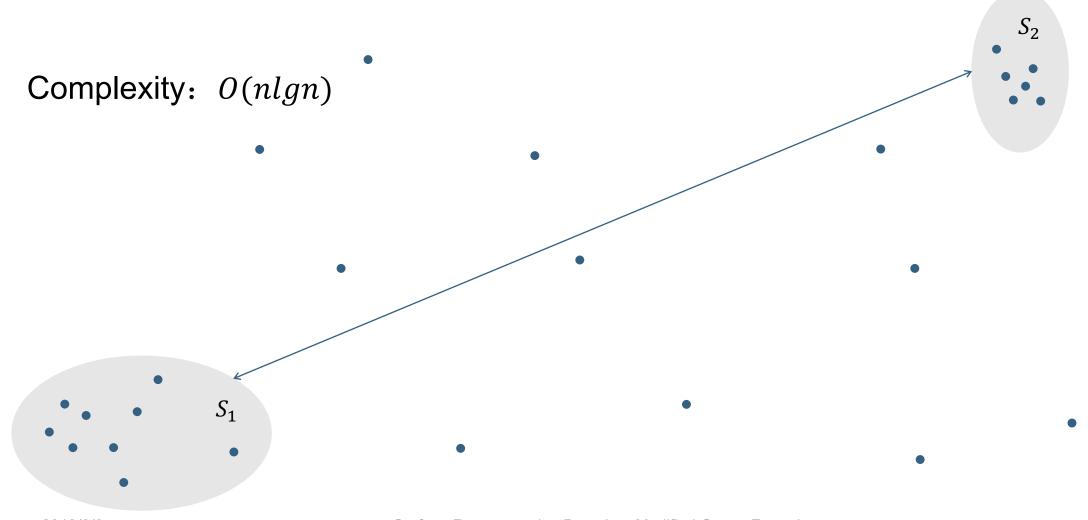


 $\blacksquare Dist > Threshold$



■ Dist < Threshold





Outline

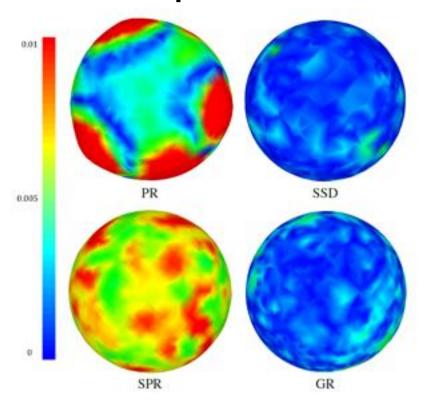
- 1 Related Works
- 2 Gauss Surface Reconstruction
- **Results and Comparisons**
- 4 Conclusion

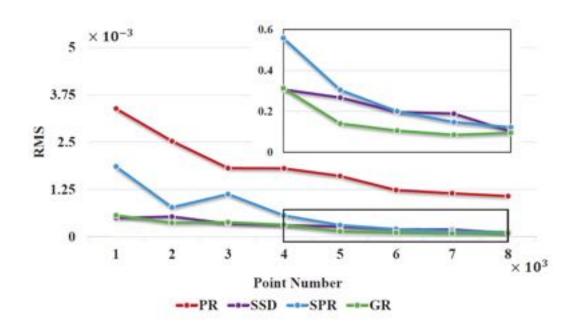
3 Algorithms for comparisons

- ■Poisson SR (Kazhdan *et al.* 2006, SGP)
- Screened Poisson SR (Kazhdan *et al.* 2013, TOG)
- ■SSD (Calakli *et al.* 2011, CGF)
- ■Dictionary learning (Xiong *et al.* 2014, TOG)

3 Accuracy

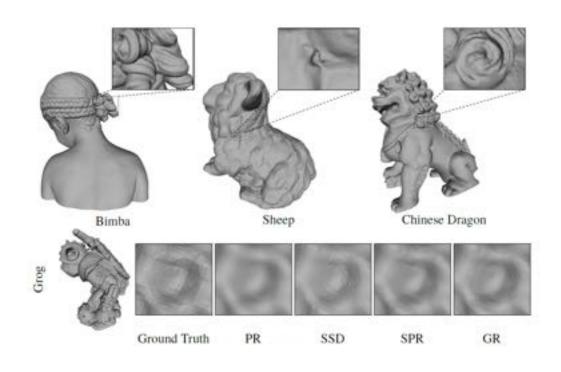
■Data : Samples on unit sphere (1000 samples)

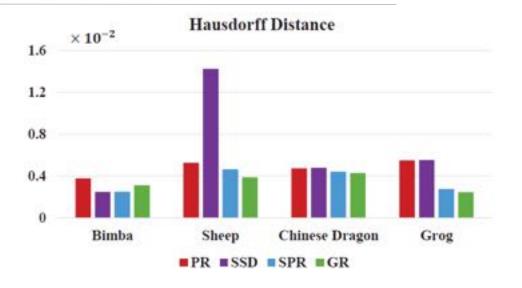


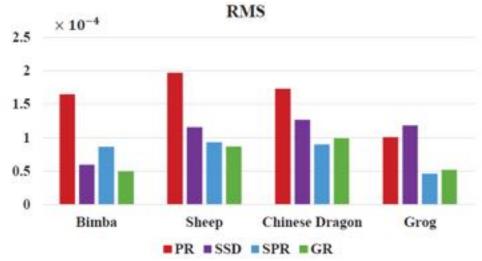


3 Accuracy

■Data : AimShape

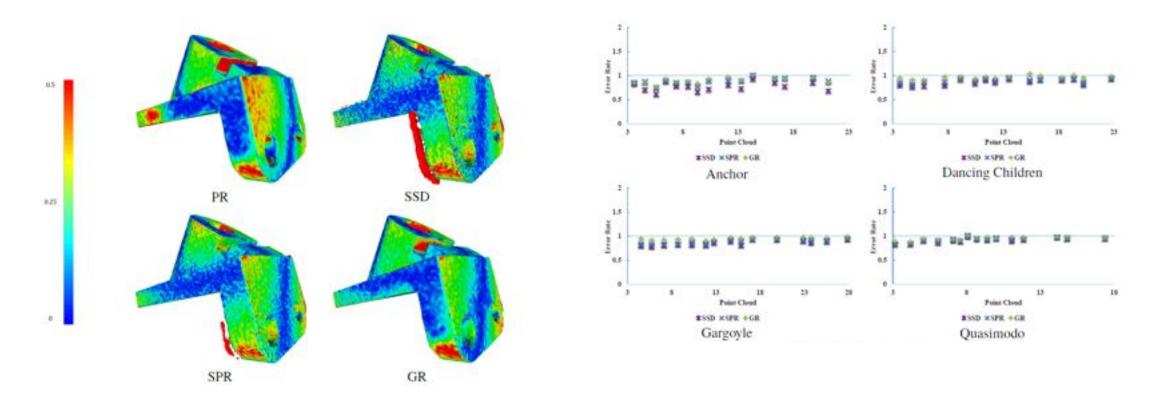






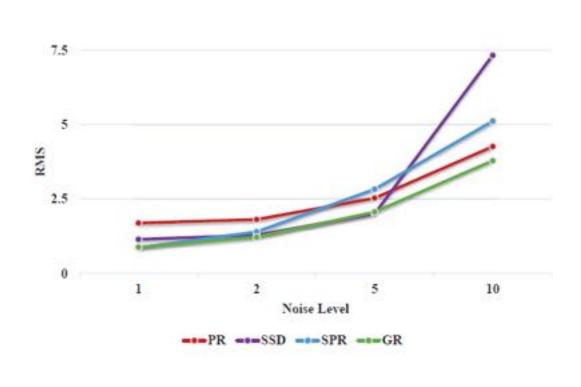
3 Accuracy

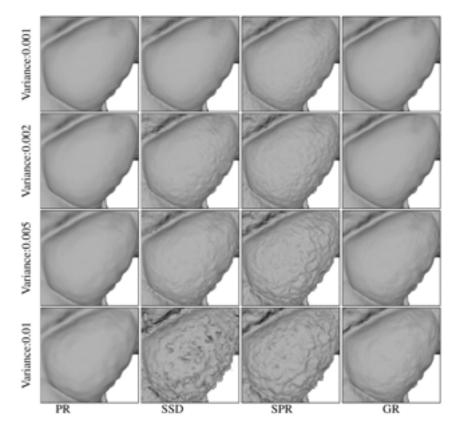
■Data: Berger et al. A benchmark for surface reconstruction [TOG 2013]



3 Synthetic noise

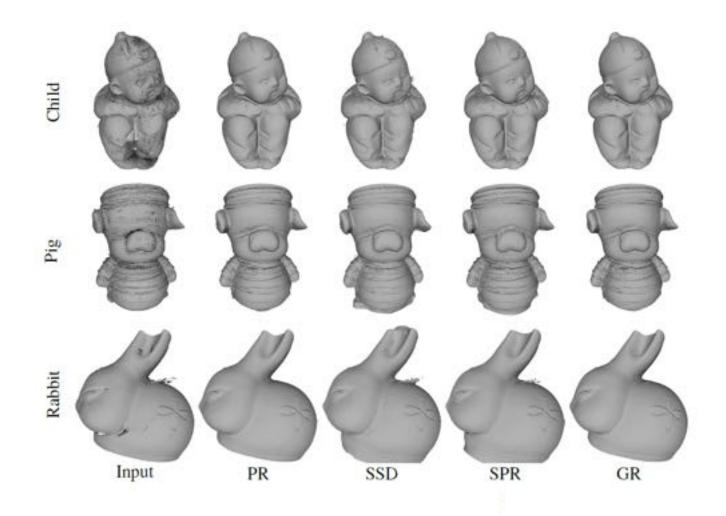
■Data: Gaussian distribution noises





3

Real-world Scanned Data



3

Real-world Scanned Data



Merlion model

■ Data: Xiong et al. Robust surface reconstruction via dictionary [TOG 2014]

GR Result(octree depth = 10)

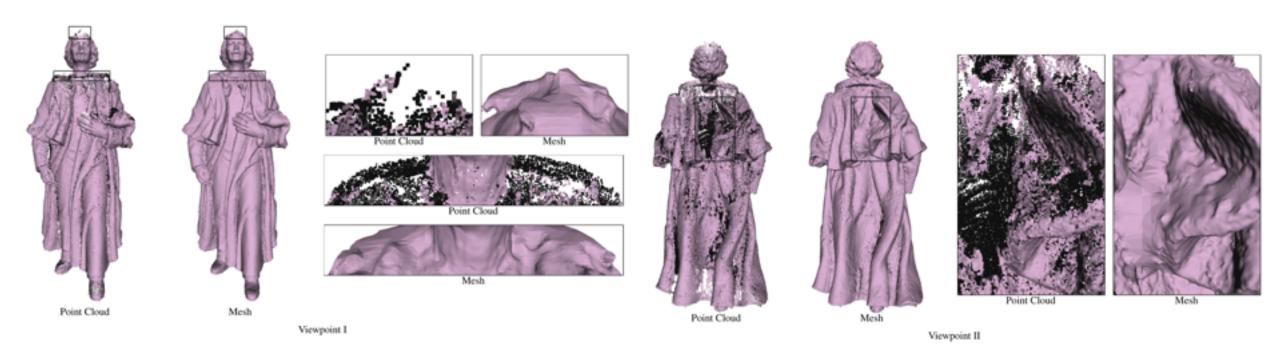
[Xiong et al. 2014], |v| = 0.28

GR (octree depth = 9), |v| = 0.32

GR (octree depth = 10), |v| = 1.32

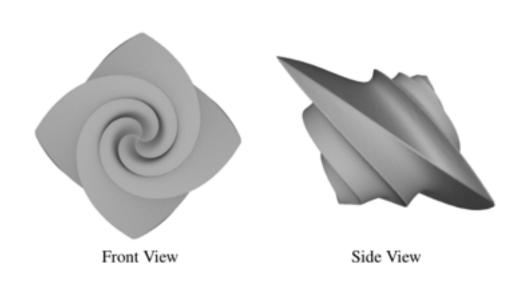
3 Missing Data

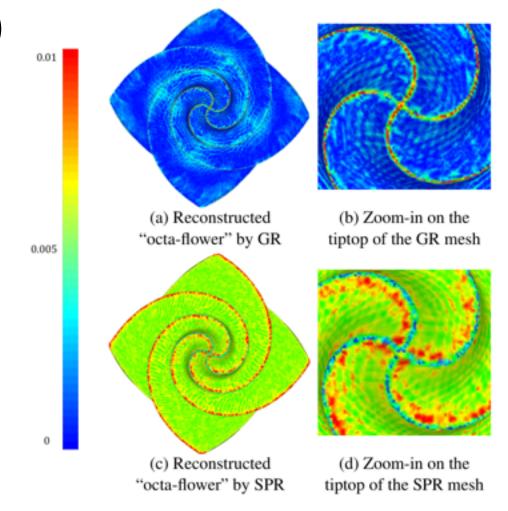
■Data: EPFL(http://lgg.epfl.ch/code.php)



3 Sharp features

■Data : Oct-Flower (Aimshape)

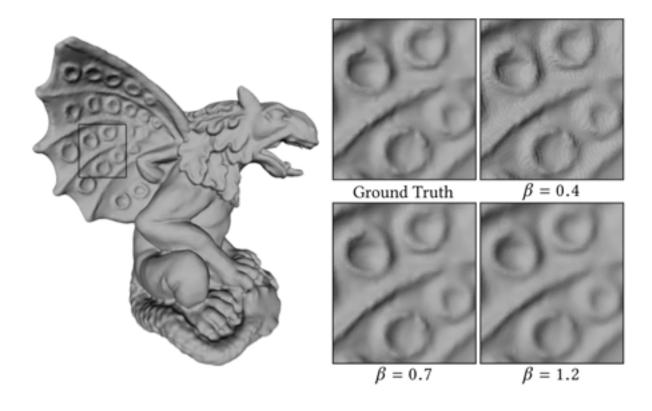


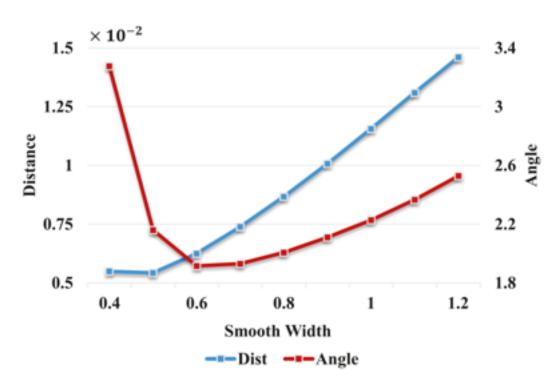


3 Efficiency

Method	Cores	Time in Seconds							
		Bimba				Sheep			
		Tree Cons	Func-Eval	Iso-Surf	Total	Tree Cons	Func-Eval	Iso-Surf	Total
PR	CPU 1 core	6.00	63.79	30.94	100.72	2.08	30.63	13.20	45.92
SSD	CPU 1 core	2.90	27.83	9.59	40.33	0.96	14.38	4.51	19.85
SPR	CPU 1 core	8.13	95.85	29.93	133.92	2.78	31.41	9.58	43.77
	CPU 10 cores	8.36	14.86	10.55	33.77	2.80	5.60	3.30	11.70
GR	CPU 1 core	13.90	36.05	17.12	67.07	6.03	14,26	8.39	28.69
	CPU 10 cores	10.37	4.21	8.28	22.86	4.39	1.71	4.18	10.28
	GPU		1.72				0.77		
Method	Cores	Time in Seconds							
		Chinese Dragon			Grog				
		Tree Cons	Func-Eval	Iso-Surf	Total	Tree Cons	Fune-Eval	Iso-Surf	Total
PR	CPU 1 core	8.55	110.69	54.56	173.79	10.96	182.34	93.20	286.50
SSD	CPU I core	3.78	34.77	12.21	50.76	5.13	45.57	16.96	67.66
SPR	CPU 1 core	10.75	124.65	38.32	173.72	13.03	176.05	54.22	243.30
	CPU 10 cores	10.65	19.34	12.88	42.86	13.04	26.21	18.55	57.80
GR	CPU I core	22.10	64.88	27.87	114.85	36.00	99.28	46.50	181.78
	CPU 10 cores	16.42	7.32	13.68	37.42	24.72	11.14	23.18	59.04
	GPU		3.03				5.30		
Method	Cores	Time in Seconds							
		Child			Pig				
		Tree Cons	Func-Eval	Iso-Surf	Total	Tree Cons	Func-Eval	Iso-Surf	Total
PR	CPU 1 core	9.48	128.60	58.15	196.22	12.29	168.62	71.00	251.91
SSD	CPU 1 core	4.27	42.00	12.01	58.29	5.27	45.37	12.17	62.80
SPR	CPU 1 core	11.85	127.83	37.96	177.64	13.27	143.48	42.00	198.74
	CPU 10 cores	11.74	21.91	12.59	46.24	13.18	22.90	13.84	49.92
GR	CPU 1 core	25.40	70.19	29.39	124.98	29.42	91.05	33.11	153.58
	CPU 10 cores	18.67	8.15	15.15	41.97	21.64	10.50	17.19	49.33
	GPU	20	3.44			*	4.37	2	-

3 Choice of width coefficient





Outline

- 1 Related Works
- 2 Gauss Surface Reconstruction
- Results and Comparisons
- 4 Conclusion

4 Conclusion

- ■A hybrid implicit function;
- ■An explicit integral formula based on Gauss Lemma;
 - without solving any linear system;
 - has a natural parallel implementation;
- Disk integration ;
- ■A concise and efficient version of FMM.

4 Future work

- Hash Octree
- ■Enhanced implementation of the FMM
- A closed form formula for disk integration
- Completely GPU Version

•Thanks!