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Outline: Steklov Spectral Geometry for Extrinsic Shape Analysis

* Background in extrinsic and intrinsic geometry.
e Qur solution: an extrinsic geometric operator.
* Theoretical properties and empirical behaviors of our operator.

* A brief look at the implementation details.



Extrinsic Geometry vs. Intrinsic Geometry

* Extrinsic geometry cares about spatial embedding of the shape.

Euclidean




Extrinsic Geometry vs. Intrinsic Geometry

* Extrinsic geometry cares about spatial embedding of the shape.

* Intrinsic geometry studies properties that can be measured without leaving

the surface, e.g. geodesic distances.
T T
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Review: Motivations in Intrinsic Shape Analysis

Intrinsic approaches are invariant to isometry (“pose invariant”).
Real-world objects are usually subject to (near-) isometries.

Isometry J: length-preserving map
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Notion of Intrinsic Geometry can be Counterintuitive




Intrinsic Information is Incomplete

Intrinsic geometry: any origami equivalent to a piece of flat paper!

Origami images from http://image.google.com/



Existing Work in Extrinsic Geometry

* Extrinsic histogram:
e SHOT [Tombari et al. 2010]
e D2 descriptors [Osada et al. 2002]

e Offset surface: [Corman et al. 2017]

e VVolume—based:

Raviv et al. 2010] Ags = aa; + aazz + ;_;

Litman et al. 2012] d

'Wang and Wang 2015] * “Volumetrization” is hard: clean input mesh
Patane 2015] * Inability to handle open surfaces/triangle soups
[Rustamov 2011]

* Inconsistency unless super dense volume mesh
e Cannot attribute shape difference onto surface



Our Problem: Extrinsic Geometry Analysis from a Boundary Representation

Origami images from http://image.google.com/



Review: (Intrinsic) Shape Analysis

e Distance [Lipman et al. 2010; Crane et al. 2013]




Review: (Intrinsic) Shape Analysis

1  Distance [Lipman et al. 2010; Crane et al. 2013]
y = e Segmentation [Reuter et al. 2009]




Review: (Intrinsic) Shape Analysis

r‘\ \
e Distance [Lipman et al. 2010; Crane et al. 2013
. "f% & : ]

4 T ’\», } e Segmentation [Reuter et al. 2009]
il P o —_—- « Shape description [Sun et al. 2009]
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Review: (Intrinsic) Shape Analysis

—
def Intrinsic Shape Analysis( mesh)
L = Laplacian Operator ( mesh)

delete mesh

results = compute ( L)

Distance [Lipman et al. 2010; Crane et al. 2013]
Segmentation [Reuter et al. 2009]

Shape description [Sun et al. 2009]

Shape retrieval [Bronstein et al. 2011]

Correspondence [Ovsjanikov et al. 2012]

Shape exploration [Rustamov et al. 2013]

Vector field processing [Azencot et al. 2013]
Simulation [Azencot et al. 2014]

Deformation [Boscaini et al. 2015]




Laplacian Operator/Matrix Capturing Intrinsic Geometry

* The Laplacian operator (i.e.

matrix) encodes the surface
up to isometry.

* n: #Hvertices.

p
» i (cot a;j + cot [)’i}-) if {i, j} is an edge
. ‘ — 24 Lij ifi=j
\0 otherwise
A ;: the area associated to vertex i.




Laplacian: Definition

Laplace operators in the Euclidean space.

2 2
o R?: Apz = aaxz + aayz (for images and 2D graphics)

‘ Generalization from planar domain to a curved domain

Laplace-Beltrami operator (Laplacian) on manifold M.

@M JTdetal (\/ | det g QD Laplacian (for surface M)

where g € R#*%7sthe metric.




Why the (Laplacian) Operator Approach?

* The Laplacian operator (i.e.
matrix) encodes the surface
up to isometry.

Original mesh Coarse mesh  Unbalanced mesh

* n: #Hvertices.

* Invariance to shape representation
* Triangle meshes

Quad meshes

* Polygon meshes

Point clouds

* Triangle soups

* As the discretization of a continuous operator



Our Goal: An Operator/Matrix Capturing Extrinsic Geometry

An operator-based approach to systematically

S E ]:Rn xn introduce extrinsic geometry to many tasks

* We are looking for Some
operator (i.e. matrix) S def Intriusic Shape Analysis( mesh)
encodes extrinsic geometry.

T.anlacian Operator ( mesh)

* n: #Hvertices.

delete mesh

results = compute( L)

return results




Dirichlet-to-Neumann (DtN) Operator &

Consider a volume . bounded
by the surface I' = 0().

g(0Q)



Dirichlet-to-Neumann (DtN) Operator &

Consider a volume ) bounded L
by the surface I' = 9(1.
Au(x) =0 x €N
u(x) = g(x) x €00 M,
g(0Q) DtN _a
where g(T') is Dirichlet data l gn(amT g(0)

Neumann data g,, = %u(f‘)

Dirichlet-to-Neumann (DtN) operator:

S:i=gr gy
Also known as the Steklov-Poincaré

rator.
operato 9(Q)




DtN operator and Steklov eigenvalue problem

e Discrete Dirichlet-to-Neumann operator: § € R™"*". n: number of vertices

* S is symmetric and positive semidefinite.

Po D1 P2 Pn

 This eigenvalue problem of S is known as the Steklov eigenvalue problem.



DtN Operator & and Extrinsic Geometry

* The DtN operator § encodes extrinsic geometry.
* The surface can be recovered from its DtN operator up to rigid motion.

Theorem

Denote Q4,Q, € R3 as two domains, and a : Q4 — Q, is a bijection. Under proper

assumptions, if the two domains have the same Dirichlet-to-Neumann operators (under
map composition), then @ must be a rigid motion.”

>M. Lassas and G. Uhlmann (2001). “On determining a Riemannian manifold from the Dirichlet-to-Neumann map”. In: Annales scientifiques de I'Ecole normale
supérieure. Vol. 34. 5, pp. 771-787.



DtN Operator & and Extrinsic Geometry

* The DtN operator § encodes extrinsic geometry.
* The surface can be recovered from its DtN operator up to rigid motion.
* The DtN operator captures critical extrinsic quantities like the mean curvature.

For smooth domains in R3, the Steklov heat kernel admits the asymptotic
expansion ast — O+ [Polterovich and Sher 2015]
e B(x,x) = ) e thig;(x)? ~ ) ar(x)tF-2+ » b (x)t'logt,
1
ap(x) = oy
_ H(x)
a;(x) = A
1 . Kx) H(x): mean curvature
az(x) = 161 H(x)* + T3 K (x): Gaussian curvature




Steklov Eigenfunctions and Extrinsic Geometry

Level sets of Steklov eigenfunctions conform to mean curvatures.
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Kernel-based Descriptors

Steklov

TTorts<an eigenfunctions/eigenvalues

Heat kernel: ﬁ

ke(r,y) = ) e M) ()

=0

Heat kernel signature [Sun et al. 2009]:

hi(x) = k¢(x, x)



Heat Kernel Signature

Laplacian Steklov

Steklov heat kernel signature as
a “multi-scale mean curvature”



Heat Kernel Signature h.(x)
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Steklov Spectrum

The 10th eigenfunction.

Laplacian

Comparison of eigenfunctions.



Steklov Spectrum

The 20th eigenfunction.

Laplacian

Comparison of eigenfunctions.
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The 40th eigenfunction.

Laplacian

Steklov

Comparison of eigenfunctions.



Steklov Spectrum

The 100th eigenfunction.

Laplacian

Comparison of eigenfunctions.



Steklov Spectrum

The 200th eigenfunction.

Laplacian

Comparison of eigenfunctions.



Steklov Spectrum

The 200th eigenfunction.

Steklov Laplacian

Comparison of eigenfunctions.

Steklov eigenfunction: “cylinder”-like pattern (volume behavior).
Laplacian eigenfunction: “disk”-like pattern (surface behavior).



Spectral Distance

Steklov

TTorts<an eigenfunctions/eigenvalues

Spectral distance [Lipman et al. 2010]: T
= 1

d5(6,)? = ) = (i) = i)’

=1

Diffusion distance [Coifman and Lafon 2006]:

(00]

dp(,)? = ) e (gy(x) = $i(y))’

=1



Diffusion Distance

Back

Front

Pancake-like shape

D-Laplacian D-Steklov D-Volumetric



Spectral Distance

Back

E%\% E V\ b R .

* Why not simply using (inverse) Euclidean distance between points as the metric?

* We would like two hands to be far apart from each other!
J4 o [ A

|-—‘“}/ii

Bi-Laplacian Bi-Steklov Bi-Volumetric

Front




Diffusion Distance

Back

Front

D-Laplacian D-Steklov D-Volumetric



Dirichlet-to-Neumann (DtN) Operator &

Consider a volume (1 bounded o "y,
by the surface I' = 0}
M(x)=0  x€EQ
u(x) = g(x) x €90 M,
IGLY) o _9
where g(I') is Dirichlet data l 9n(00) an 99

Neumann data g,, = %u(f‘)

Dirichlet-to-Neumann (DtN) operator:

Also known as thé ov-Poincaré

operator. g(Q)




DtN as the Composition of Boundary Operators

The DtN operator § can be written as the composition of operators:

1 (1
S=H+ §3+.‘T p-1 Eﬂ+9{ .

V,K,T,H: boundary integral operators. J: identity operator.

 Boundary integral operators that are straightforward to discretize.

e Can be generalized to open surfaces.



Boundary Integral Operators

The single layer potential V is defined as

VH160 = [ GG yIBE) AT,

I

1 1
where G(x,y) := prlm—

The discretization of V is V. € R™" such that V,; is roughly the (weighted) inverse
distance between vertex i and J.



Boundary Integral Operators

The single layer potential V is defined as

VH160 = [ GG yIBE) AT,

I

1 1
where G(x,y) := prlm—

The discretization of V is V. € R™" such that V,; is roughly the (weighted) inverse
distance between vertex i and J.

K,T,H have similar definitions to V but using different kernels rather than I



Discrete Boundary Integral Operators

The discretization of V is V € R™*" such that V;;is roughly the inverse distance between
vertexiand j. V,K, T,H € R™" are similar but using different kernels:

1
R P
k(o y) i= & ;f_) ;,]Z(Y), t(xy) = Y ;f_) }',IE(X) = k(y, %),
_onx)nly) 3lE-y)nMIly—=x)nx)]
M= TR T x—yI° ’

|x — y|: the distance between points X, y.
n(x),n(y): the normal directions at points x, y on the surface, resp.



More Boundary Integral Operators

[V](x) = f 6 YO drGy), K10 = [ 228Y) 4wy argy)
- ) ) . an(y) )
G X, OZG X,
b y) C5Y)_ 4 vy drey).

T10) 1= | e PN, [HP1() = -

r r on(x)on(y)

is the fundamental solution of Laplace equation.

1 1
where G (x,y) = prel—



Boundary Element Method (BEM) with Fast Computations

* Hierarchical matrix (H-matrix): reduces complexity to O(n logl/e ).
* |terative eigensolver for top k eigenfunctions.

* Provably optimal preconditioners are available.

H-matrix



Steklov Eigenvalues as the “ShapeDNA” (i.e. Shape2Vec)
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Shape Difference

Generalizing operator approach for shape difference [Rustamov et al. 2013]

M Steklov Distortion Laplacian Distortion




Convergence and Robustness to Irregular Meshing
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Robustness
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Robustness

)

Steklo

@

\"

)

1200

1000,

200,

00,

400,

200

%0

300

a0e

0018

0016

0ore,

0012,

10 20 ) a % &0 ) 0 )

Laplacian



Exploring Shape Variability
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Exploring Shape Variability
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Exploring Shape Variability
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Our BEM Formulation v.s. A Possible FEM Operator
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Comparison with Dirac Operator [Liu et al. 2017]

Smooth Noise Clay Bump




Comparison with Dirac Operator [Liu et al. 2017]
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Comparison with Dirac Operator [Liu et al. 2017]

Steklov Eigenvalues. Scaled Steklov Eigenvalues.
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Comparison with Dirac Operator [Liu et al. 2017]
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Conclusion

e Surface-only approach using the boundary element method.
e An operator approach for extrinsic geometry for many applications.

Code available



Future Work

* Integral geometry operators.

e Justify the use of DtN operator in various applications:

e Shape deformation, physical simulation, skinning animation, interpolation
weights, volumetric parameterization, meshing, vector and frame field design,
statistical learning on manifolds, and geometric deep learning.

A mathematical theory for open surfaces and point clouds.

e Open question: “Can you hear the shape of a drum (from Steklov
eigenvalues)?”

Code available



Q&A
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Single Layer Potential

The single layer potential V : H=Y/2(T") - HY/2(T') is defined via

V] () = f 6(x, y)b() dT(y),

I

1 1
where G (x,y) = pr—

Physically, V maps an input electric charge distribution ¢ to the resulting electric potential
distribution.

is the fundamental solution of Laplace equation.



Double Layer Potential

The double layer potential & : HY/2(T) = HY?(T) is defined via

[ 0G(xy)
34160 = | e dry)

Physically, K maps an input electric dipole density distribution ¢ to the resulting electric
potential distribution.



Adjoint Double Layer Potential

The adjoint double layer potential T : H=Y/2(T") » H~/2(T) is defined as the conormal
derivative of V:

G (x,
7160 = [ 5P pmar),

I

where the integral is understood in the sense of Cauchy principal value. Physically, " maps
an input electric charge density distribution ¢ to the normal derivatives of the resulting
electric potential distribution.



Hypersingular Operator

The hypersingular operator # : HY/2(I") = H~Y2(T) is defined as minus the conormal

derivative of K:
0CEY) o dry)
L oan(x)on(y) LTV

Physically, H maps an input electric dipole density distribution ¢ to normal derivatives of
the resulting electric potential distribution.

(HP)(x) = —




DtN as the Composition of Boundary Operators

The DtN operator § can be written as the composition of operators:

1 (1
S=H+ §3+.‘T p-1 Eﬂ+9{ .

where V, K, T, H are boundary integral operators.

 Boundary integral operators that are straightforward to discretize.

e Can be symbolically defined for open surfaces.



Reformulation

The eigenvalue problem Su = AMu

S:=H+ (0.5M + T)V~1(0.5M + K). (5)

o = wl

Reformulated as

where Q := 0.5M + K



Shape Segmentation
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Generalization to Open Surfaces

* Example: Hemisphere. .




Thanks you!

Questions?



