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Outline: Steklov Spectral Geometry for Extrinsic Shape Analysis

• Background in extrinsic and intrinsic geometry.

• Our solution: an extrinsic geometric operator.

• Theoretical properties and empirical behaviors of our operator.

• A brief look at the implementation details.



Extrinsic Geometry vs. Intrinsic Geometry 

• Extrinsic geometry cares about spatial embedding of the shape.

• Intrinsic geometry studies properties that can be measured without leaving 
the surface, e.g. geodesic distances.
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Review: Motivations in Intrinsic Shape Analysis

Intrinsic approaches are invariant to isometry (“pose invariant”).

Real-world objects are usually subject to (near-) isometries.

Isometry 𝒯: length-preserving map
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Notion of Intrinsic Geometry can be Counterintuitive
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Intrinsic Information is Incomplete 

Origami images from http://image.google.com/

Intrinsic geometry: any origami equivalent to a piece of flat paper!

𝒯



Existing Work in Extrinsic Geometry

• Extrinsic histogram: 
• SHOT [Tombari et al. 2010] 

• D2 descriptors [Osada et al. 2002] 

• Offset surface: [Corman et al. 2017]

• Volume–based: 
• [Raviv et al. 2010]

• [Litman et al. 2012]

• [Wang and Wang 2015]

• [Patane 2015]

• [Rustamov 2011]

• “Volumetrization” is hard: clean input mesh

• Inability to handle open surfaces/triangle soups

• Inconsistency unless super dense volume mesh

• Cannot attribute shape difference onto surface



Our Problem: Extrinsic Geometry Analysis from a Boundary Representation

Origami images from http://image.google.com/



Review: (Intrinsic) Shape Analysis

• Distance [Lipman et al. 2010; Crane et al. 2013]

• Segmentation [Reuter et al. 2009]

• Shape description [Sun et al. 2009]

• Shape retrieval [Bronstein et al. 2011]

• Correspondence [Ovsjanikov et al. 2012]

• Shape exploration [Rustamov et al. 2013]

• Vector field processing [Azencot et al. 2013]

• Simulation [Azencot et al. 2014]

• Deformation [Boscaini et al. 2015]
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def Intrinsic_Shape_Analysis( mesh)

L = Laplacian_Operator( mesh)

delete mesh

results = compute( L)

……

……

return results



Laplacian Operator/Matrix Capturing Intrinsic Geometry

L ∈ ℝn×n

• The Laplacian operator (i.e. 
matrix) encodes the surface 
up to isometry. 

• 𝑛: #vertices. 



Laplacian

Generalization from planar domain to a curved domain  



Why the (Laplacian) Operator Approach?

L ∈ ℝn×n

• The Laplacian operator (i.e. 
matrix) encodes the surface 
up to isometry. 

• 𝑛: #vertices. 
• Invariance to shape representation

• Triangle meshes
• Quad meshes
• Polygon meshes
• Point clouds
• Triangle soups

• As the discretization of a continuous operator

Coarse mesh Unbalanced meshOriginal mesh



Our Goal: An Operator/Matrix Capturing Extrinsic Geometry 

An operator-based approach to systematically 
introduce extrinsic geometry to many tasksS ∈ ℝn×n

• We are looking for Some 
operator (i.e. matrix) S
encodes extrinsic geometry.

• 𝑛: #vertices. 

def Intrinsic_Shape_Analysis( mesh)

L = Laplacian_Operator( mesh)

delete mesh

results = compute( L)

……

……

return results
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Dirichlet-to-Neumann (DtN) Operator 𝒮

Consider a volume Ω bounded 
by the surface Γ = 𝜕Ω.
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Dirichlet-to-Neumann (DtN) Operator 𝒮

Dirichlet-to-Neumann (DtN) operator:

Also known as the Steklov-Poincaré

operator.

Consider a volume Ω bounded 
by the surface Γ = 𝜕Ω.



DtN operator and Steklov eigenvalue problem

• Discrete Dirichlet-to-Neumann operator: 𝐒 ∈ ℝ𝑛×𝑛. 𝑛: number of vertices

• 𝐒 is symmetric and positive semidefinite. 

𝐒 ∈ ℝ𝑛×𝑛
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• This eigenvalue problem of 𝐒 is known as the Steklov eigenvalue problem. 



DtN Operator 𝒮 and Extrinsic Geometry

• The DtN operator 𝒮 encodes extrinsic geometry. 
• The surface can be recovered from its DtN operator up to rigid motion. 

• The DtN operator captures critical extrinsic quantities like the mean curvature. 



DtN Operator 𝒮 and Extrinsic Geometry

• The DtN operator 𝒮 encodes extrinsic geometry. 
• The surface can be recovered from its DtN operator up to rigid motion. 

• The DtN operator captures critical extrinsic quantities like the mean curvature. 

For smooth domains in ℝ3, the Steklov heat kernel admits the asymptotic 
expansion as 𝑡 → 0+ [Polterovich and Sher 2015]



Steklov Eigenfunctions and Extrinsic Geometry

Level sets of Steklov eigenfunctions conform to mean curvatures. 





Laplacian eigenfunctions/eigenvalues
Steklov



Steklov heat kernel signature as 
a “multi-scale mean curvature”

















Laplacian eigenfunctions/eigenvalues
Steklov
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Pancake-like shape



Back

Front

• Why not simply using (inverse) Euclidean distance between points as the metric?

• We would like two hands to be far apart from each other!



Back

Front
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Boundary Element Method (BEM) with Fast Computations

• Hierarchical matrix (H-matrix): reduces complexity to 𝒪(𝑛 log1/𝜖 ).

• Iterative eigensolver for top k eigenfunctions.  

• Provably optimal preconditioners are available. 



Steklov Eigenvalues as the “ShapeDNA” (i.e. Shape2Vec)





Convergence and Robustness to Irregular Meshing

• Low 14k

• Medium 54k

• High 220k

• Unbalanced 7k+110k



Robustness



Robustness











Our BEM Formulation v.s. A Possible FEM Operator











Conclusion

• Surface-only approach using the boundary element method.

• An operator approach for extrinsic geometry for many applications.

Code available



Future Work

• Integral geometry operators.

• Justify the use of DtN operator in various applications: 
• Shape deformation, physical simulation, skinning animation, interpolation 

weights, volumetric parameterization, meshing, vector and frame field design, 
statistical learning on manifolds, and geometric deep learning.

• A mathematical theory for open surfaces and point clouds.  

• Open question: “Can you hear the shape of a drum (from Steklov 
eigenvalues)?”

Code available



Thank you!       Q&A
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Generalization to Open Surfaces

• Example: Hemisphere.




