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• Goal: practical relighting on single portrait image

• Practical in detail:

• Robust to the pose and camera view

• Work well on natural lightings

• Adapt to high-resolution images

• Run at interactive rate

• Solution: Deep Neural Network + Real Face Data.
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How can we get the portrait pair for training?
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Wadhwa, Neal, et al. "Synthetic depth-of-field with a single-camera mobile phone." SIGGRAPH 2018
Debevec, Paul, et al. "Acquiring the reflectance field of a human face." SIGGRAPH 2000.
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• OLAT images
• 22 people (18 training, 4 validation), each 3~5 facial expressions

• Each OLAT captured with 7 cameras in 6 seconds.

• HDR lighting environments
• ~2000 indoor HDR lighting 

from Laval Dataset

• ~1000 outdoor HDR 
lighting from the web

Method: Data

• Total: 226,800 portrait and lighting pairs for training
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Several 
conv layers
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Light prediction on 
each image patch

Confidence of 
prediction on each 

image patch

* =

• Confidence learning
• Predict the confidence of light prediction
• Allow network to say “I don’t know”

Reshape
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• Specular highlights

• Overexposed pixels

• Over-smoothing

• Unseen high-saturation 
color



Conclusion



Conclusion

• Learn the relighting function on portraits using Light Stage data



Conclusion

• Learn the relighting function on portraits using Light Stage data

• Take home message:



Conclusion

• Learn the relighting function on portraits using Light Stage data

• Take home message:

• For human faces, use real data.



Conclusion

• Learn the relighting function on portraits using Light Stage data

• Take home message:

• For human faces, use real data.

• End-to-end training vs assuming models.
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