

DEEP VIEW SYNTHESIS FROM SPARSE PHOTOMETRIC IMAGES

Zexiang Xu¹, Sai Bi¹, Kalyan Sunkavalli², Sunil Hadap³, Hao Su¹, Ravi Ramamoorthi¹

¹University of California, San Diego ²Adobe Research ³Lab 126, Amazon

Render real scenes

[Furukawa and Ponce 2008]

[Newcombe et al. 2011]

[Xu et. al 2016]

Light transport acquisition

Light Transport Function

Image-based relighting

Our relighting under environment map illumination

[Xu et al. 2018]

Light transport acquisition for changing view

Sparse input views

Novel view appearance

Novel view synthesis

[Chen and Williams 1993]

[Flynn et al. 2016]

[Kalantari et al. 2016]

- Unstructured views
- Small baseline
- Natural illumination

[Levoy and Hanrahan 1996]

[Penner and Zhang 2017]

[Zhou et al. 2018]

Sparse sampling for light transport acquisition

- Large baseline
- Controlled lighting

Preview

- Large baseline
- Controlled lighting

Preview

Preview

- Sparse
- Good coverage

- 12 vertices
- 20 faces
- Symmetric

Synthetic scenes

Geometry:

Procedurally Generated Objects

Material images courtesy: Allegorithmic and Adobe Stock

Reflectance:

Adobe Stock Material

Synthetic scenes

Geometry:

Procedurally Generated Objects

Reflectance:

Adobe Stock Material

CNN

CNN

Input views

8

CNN

Input views

Novel view

Input views

Novel view

Novel view

Novel view

Novel view

Plane sweep volume

Input views

Plane sweep volume

Input views

Plane sweep volume

Input views

Infer geometry (depth)
 Infer attention maps

Shading branch

Depth probability maps

Shading branch

Shading branch

Shading Predictor (3D CNN)

Corr-Branch + Shade-Branch

Real Data Results

Data #1: input images and corresponding views

6

Data #1: compare with [Penner and Zhang 2017] using the same inputs

Penner and Zhang 2017 Our results

Ground truth

(Some views are occluded)

Data #1: compare with [Sun et al. 2018] using the same inputs

Sun et al. 2018

Our results

Ground truth

(Some views are occluded)

Data #2: input images and corresponding views

Data #2: our results and ground truth

Inputs and viewing directions

Ground truth (Some views are occluded)

Data #3: input images and corresponding views

Data #3: our results and ground truth

Inputs and viewing directions

Our results

Data #4: input images and corresponding views

Data #4: our results and ground truth

(Some views are occluded)

Novel view relighting

Novel view relighting

Data #4: our novel view relighting results

Our synthesized images

Relighting

Environment map 1

Multi-view stereo

Input images

Reconstruction

Data #2: Multi-view stereo from synthesized images

Reconstruction from 56 captured images

Reconstruction from 56 synthesized images using our method Reconstruction from 56 synthesized images using our method (rendered with color)

Limitations

- Highly specular objects
 - 64 x 64 image crops for training
 - Limited receptive field

Our result

Ground truth

Limitations

- Highly specular objects
 - 64 x 64 image crops for training
 - Limited receptive field
- Highly non-convex shape
 Visible from 1 or 2 views

Our result

Ground truth

Conclusion

Our Result

Ground Truth
Conclusion

Our Result

Ground Truth

Novel view relighting

Multi-view stereo

Acknowledgements

- Pratul Srinivasan and Zhengqin Li
- NSF grants 1617234, 1703957
- ONR grant N000141712687
- Adobe
- Adobe Research Fellowship
- Powell-Bundle Fellowship
- Ronald L. Graham Chair
- UC San Diego Center for Visual Computing

THANK YOU!