
Decomposed Optimization Time Integrator
for Large-Step Elastodynamics

Minchen Li1,2, Ming Gao1, Timothy Langlois2, Chenfanfu Jiang1, Danny Kaufman2

1. University of Pennsylvania

2. Adobe Research

(a)

(b)

(d)

(c)

Time steps
Time

Time Stepping

Substeps

DOT:

�E(x) = 1
2 (x − xp)TM(x − xp)+

Optimization Time Integrator

!3

Incremental
potential

[Ortiz and Stainier 1999]
Inertia term

Deformation
Energy

(Elasticity
Potential)

W(x)

Challenging for:

• large deformation and high-speeds

For each time step �t

Provide robust simulation

• Large time step sizes �h

New node
positions

Predictive
position

Time step
Size

:)Quadratic
Nonlinear,
nonconvex!
Hard!

h 2

Mass
matrix

* � for implicit Eulerxp = xt + h vt + h 2M−1f

xt+ 1 = argminx

Desiderata

!4

Robustness Efficiency Scalability Accuracy

ML [Lee et al. 2018], VR/AR, and gamesVFX [Smith et al. 2019]

Fabrication Engineering

Line-Search Methods

!5

1. Precondition: �pi = − Pi−1 ∇E(xi)
 2. Line Search: � ensures �xi+ 1 = xi + αpi E(xi+ 1) ≤ E(xi)

Methods vary in � :Pi

Projected Newton (PN) [Teran et al. 2005]

 �Pi = ∇2E(xi)

L-BFGS-H [Brown et al. 2013]

 � quasi-Newton initialized with�Pi = ∇2E(xt)

L-BFGS-PD [Liu et al. 2017]

 � quasi-Newton initialized with �Pi = M + h 2L

Efficiency Scalability Accuracy

L-BFGS

ADMM-PD [Narain et al. 2016]

!6

Efficiency Scalability Accuracy
Blended Cured �asi-Newton for Distortion Optimization • 1:9

Laplacian

Hessian

Fill (AMD Order)

X

Y

Z

X Y Z

X

Y

Z

X Y Z

Fig. 8. Sparsity Di�erences in Proxies. Left: The scalar Laplacian (top) is
smaller and sparser than the Hessian and its approximations (bo�om) used in
CM, PN, SLIM and AKAP. Right: This results in a much cheaper factorization
and solve for the Laplacian; it is applied in both BCQN and AQP independently
to each coordinate where only a one-time factorization precompute is required;
CM, PN, SLIM and AKAP require factorization at each iterate.

sparse triangular solves with the Laplacian’s Cholesky factor and
outer-product updates with a small �xed number of L-BFGS history
vectors. Recall that we separately solve for each coordinate with a
scalar Laplacian, not using a larger vector Laplacian on all coordinates
simultaneously; this also exposes some trivial parallelism. Apart from
the Laplacian, all steps are either linear (dot-products, vector updates,
gradient evaluations, etc.) or typically sublinear (DPJ assembly and
iterations, which only operate on the small number of collapsing
triangles, and again are easily parallelized).
As Lipton et al. proved [1979], the lower bounds for Cholesky

factorization on a two-dimensional mesh problem with n degrees of
freedom areO(n logn) space andO(n3/2) sequential time, and in three-
dimensional problems where vertex separators are at least O(n2/3),
their Theorem 10 shows the lower bounds are O(n4/3) space and
O(n2) sequential time. On moderate size problems running on current
computers, the cost to transfer memory tends to dominate arithmetic,
so the space bound is more critical until very large problem sizes are
reached.

7.1 Comparison with other algorithms
The per-iterate performance pro�le of AQP is most similar to BCQN: it
too is dominated by a Laplacian solve. The only di�erence is the extra
linear and sublinear work which BCQN does for the quasi-Newton
update and the barrier-aware �ltering; even on small problems, this
overhead is usually well under half the time BCQN spends, and as
the next section will show, the improved convergence properties of
BCQN render it faster.
The second-order methods we compare against, PN and CM, as

well as the more approximate proxy methods, SLIM and AKAP, all

use a fuller stencil which couples coordinates. The same asymptotics
for Cholesky apply, but whereas AQP and BCQN can solve a scalar
n ⇥ n Laplacian d times (once for each coordinate, independently),
these other methods must solve a single denser nd ⇥ nd matrix, with
d2 times more nonzeros: see Figure 8. Moreover, for all these methods
the proxy matrix changes at each iteration and must be refactored,
adding substantially to the cost: factorizations are signi�cantly slower
than backsolves.

8 EVALUATION
8.1 Implementation
We implemented a common test-harness code to enable the consistent
evaluation of the comparitive performance and convergence behavior
of SGD, PN, CM, AQP, L-BFGS and BCQN across a range of energies
and distortion optimization tasks including parameterization as well
as 2D and 3D deformations, where these methods allow. For AQP this
extends the number of energies it can be tested with, while more gen-
erally providing a consistent environment for evaluating all methods.
We hope that this code will also help support the future evaluation
and development of new methods for distortion optimization.

Themain body of the test code is inMATLAB to support rapid proto-
typing. All linear system solves are performed with MATLAB’s native
calls to CHOLMOD [Chen et al. 2008] with additional computational-
heavy modules, primarily common energy, gradient and iterative LCP
evaluations, implemented in C++. As linear solves are the bottleneck
in all methods covered here, an additional speed-up to all methods
is possible with Pardiso [Petra et al. 2014a,b] in place of CHOLMOD;
however, as discussed in Section 8.4 this does not change the relative
merits of the methods, and would add an additional external depen-
dency to the test code. For veri�cation we also con�rm that iterations
in the test-harness AQP and CM implementations match the o�cial
AQP [Kovalsky et al. 2016] and CM [Shtengel et al. 2017] codes.

All experiments were timed on a four-core Intel 3.50GHz CPU. We
have parallelized the damped Jacobi LCP iterations with Intel TBB;
with more cores the overhead reported below for LCP iterations is
expected to diminish rapidly. For all UV parameterization problems we
follow Kovalsky et al. [2016] and compute an initial, locally injective
embedding via a single linear solve with the cotan Laplacian; if it
fails (is not locally injective), we then fall back to plain Tutte, so that
robustness is maintained. For all constrained deformation examples,
with the exception of the Armadillo in Figure 14, we begin with an
initially injective mapping. For the Armadillo deformation example
only, we apply the LBD method [Kovalsky et al. 2015] to create a
rough, locally injective initialization from the initial constrained non-
injective deformation and pass this to both compared methods. To
enforce Dirichlet boundary conditions, i.e. positional constraints, we
use a standard subspace projection [Nocedal and Wright 2006], i.e.
removing those degrees of freedom from the problem. For constrained
problems we apply the standard approach of projecting gradients
to the null-space of constraints: a stationary point is then reached
only if the (projected) gradient vanishes, just as in the unconstrained
setting. When line search is employed we �rst �nd a maximal non-
inverting step size with Smith and Schaefer’s method [2015], followed
by standard line search with Armijo and curvature conditions.

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Blended Cured �asi-Newton for Distortion Optimization • 1:9

Laplacian

Hessian

Fill (AMD Order)

X

Y

Z

X Y Z

X

Y

Z

X Y Z

Fig. 8. Sparsity Di�erences in Proxies. Left: The scalar Laplacian (top) is
smaller and sparser than the Hessian and its approximations (bo�om) used in
CM, PN, SLIM and AKAP. Right: This results in a much cheaper factorization
and solve for the Laplacian; it is applied in both BCQN and AQP independently
to each coordinate where only a one-time factorization precompute is required;
CM, PN, SLIM and AKAP require factorization at each iterate.

sparse triangular solves with the Laplacian’s Cholesky factor and
outer-product updates with a small �xed number of L-BFGS history
vectors. Recall that we separately solve for each coordinate with a
scalar Laplacian, not using a larger vector Laplacian on all coordinates
simultaneously; this also exposes some trivial parallelism. Apart from
the Laplacian, all steps are either linear (dot-products, vector updates,
gradient evaluations, etc.) or typically sublinear (DPJ assembly and
iterations, which only operate on the small number of collapsing
triangles, and again are easily parallelized).
As Lipton et al. proved [1979], the lower bounds for Cholesky

factorization on a two-dimensional mesh problem with n degrees of
freedom areO(n logn) space andO(n3/2) sequential time, and in three-
dimensional problems where vertex separators are at least O(n2/3),
their Theorem 10 shows the lower bounds are O(n4/3) space and
O(n2) sequential time. On moderate size problems running on current
computers, the cost to transfer memory tends to dominate arithmetic,
so the space bound is more critical until very large problem sizes are
reached.

7.1 Comparison with other algorithms
The per-iterate performance pro�le of AQP is most similar to BCQN: it
too is dominated by a Laplacian solve. The only di�erence is the extra
linear and sublinear work which BCQN does for the quasi-Newton
update and the barrier-aware �ltering; even on small problems, this
overhead is usually well under half the time BCQN spends, and as
the next section will show, the improved convergence properties of
BCQN render it faster.
The second-order methods we compare against, PN and CM, as

well as the more approximate proxy methods, SLIM and AKAP, all

use a fuller stencil which couples coordinates. The same asymptotics
for Cholesky apply, but whereas AQP and BCQN can solve a scalar
n ⇥ n Laplacian d times (once for each coordinate, independently),
these other methods must solve a single denser nd ⇥ nd matrix, with
d2 times more nonzeros: see Figure 8. Moreover, for all these methods
the proxy matrix changes at each iteration and must be refactored,
adding substantially to the cost: factorizations are signi�cantly slower
than backsolves.

8 EVALUATION
8.1 Implementation
We implemented a common test-harness code to enable the consistent
evaluation of the comparitive performance and convergence behavior
of SGD, PN, CM, AQP, L-BFGS and BCQN across a range of energies
and distortion optimization tasks including parameterization as well
as 2D and 3D deformations, where these methods allow. For AQP this
extends the number of energies it can be tested with, while more gen-
erally providing a consistent environment for evaluating all methods.
We hope that this code will also help support the future evaluation
and development of new methods for distortion optimization.

Themain body of the test code is inMATLAB to support rapid proto-
typing. All linear system solves are performed with MATLAB’s native
calls to CHOLMOD [Chen et al. 2008] with additional computational-
heavy modules, primarily common energy, gradient and iterative LCP
evaluations, implemented in C++. As linear solves are the bottleneck
in all methods covered here, an additional speed-up to all methods
is possible with Pardiso [Petra et al. 2014a,b] in place of CHOLMOD;
however, as discussed in Section 8.4 this does not change the relative
merits of the methods, and would add an additional external depen-
dency to the test code. For veri�cation we also con�rm that iterations
in the test-harness AQP and CM implementations match the o�cial
AQP [Kovalsky et al. 2016] and CM [Shtengel et al. 2017] codes.

All experiments were timed on a four-core Intel 3.50GHz CPU. We
have parallelized the damped Jacobi LCP iterations with Intel TBB;
with more cores the overhead reported below for LCP iterations is
expected to diminish rapidly. For all UV parameterization problems we
follow Kovalsky et al. [2016] and compute an initial, locally injective
embedding via a single linear solve with the cotan Laplacian; if it
fails (is not locally injective), we then fall back to plain Tutte, so that
robustness is maintained. For all constrained deformation examples,
with the exception of the Armadillo in Figure 14, we begin with an
initially injective mapping. For the Armadillo deformation example
only, we apply the LBD method [Kovalsky et al. 2015] to create a
rough, locally injective initialization from the initial constrained non-
injective deformation and pass this to both compared methods. To
enforce Dirichlet boundary conditions, i.e. positional constraints, we
use a standard subspace projection [Nocedal and Wright 2006], i.e.
removing those degrees of freedom from the problem. For constrained
problems we apply the standard approach of projecting gradients
to the null-space of constraints: a stationary point is then reached
only if the (projected) gradient vanishes, just as in the unconstrained
setting. When line search is employed we �rst �nd a maximal non-
inverting step size with Smith and Schaefer’s method [2015], followed
by standard line search with Armijo and curvature conditions.

, Vol. 1, No. 1, Article 1. Publication date: April 2018.

M + h 2L =

1. Elasticity solve on element soup in parallel
Ω, " = {				}

2. Global solve with �(M + h 2L)−1 }
�xt+ 1 = argminxE(x) = 1

2 (x − xp)TM(x − xp)+ W(x)h 2

Not convergent!

Feature Table

!7

Efficiency Scalability Accuracy

LBFGS-PD

LBFGS-H

PN

ADMM-PD

DOT

: (

!8

100K tetrahedra,

Time step size: 10ms,

Converged to !

1.9 sec/frame,

10−5CN

Observations
Deformations are local

!9

Domain Decomposition

Articulated Structure

Ω, " = {				}

Domain Decomposition

!10

Original simulation domain

Ω"Ω# Ω$

Subdomains after decomposition

Subdomain copy of interface nodes

!11

Domain Decomposition

Ω, " = {				}

Original simulation domain

Ω"Ω# Ω$

Subdomains after decomposition

Domain Decomposition
• Domain decomposition preconditions iterative linear solvers

• Extensions to nonlinear systems with slow convergence

DOT Algorithm

!13

Domain Decomposition

Ω, " = {				}

Original simulation domain

Ω"Ω# Ω$

Subdomains after decomposition

Subdomain copy of interface nodes

Domain Decomposition

Domain Decomposition

!14

Ω, " = {			, 			 } Ω"Ω# Ω$

Subdomains after decompositionOriginal simulation domain

Subdomain copy of interface nodesSubdomain copy of interface nodes
Original copy of interface nodes

Domain Decomposition

!15

Ω, " = {			, 			 } Ω"Ω# Ω$

Subdomains after decompositionOriginal simulation domain

Subdomain copy of interface nodes
Original copy of interface nodes

Decomposed Penalty Lagrangian

!16

 �min ΣΩj
Ej(,) s . t . =

L(, ,) = ΣΩi(Ej(,) + 1
2 (−)T (−))

Ω, " = {			, 			 } Ω"Ω# Ω$

Kj

ill-conditioning!!

Decomposed Initializer

!17

∂2L
∂{ , }2

=
H1

H2
H3

For inner initializer
Of LBFGS!

Ω, " = {			, 			 } Ω"Ω# Ω$

Number of DOFs
do not match!!

The penalty Hessian:

Decomposed Initializer

!18

q

Ω, " = {			, 			 } Ω"Ω# Ω$

Vector defined on original domain

Decomposed Initializer

!19

qS

Ω, " = {			, 			 } Ω"Ω# Ω$

Vector from original domain to subdomains

Decomposed Initializer

!20

qS
H−1

1
H−1

2
H−1

3

Ω, " = {			, 			 } Ω"Ω# Ω$

Independent per domain back solves

Decomposed Initializer

!21

qS
H−1

1
H−1

2
H−1

3

STBr =

Ω, " = {			, 			 } Ω"Ω# Ω$

Vector back to original domain

L(, ,) = ΣΩi(Ej(,) + 1
2 (−)T (−))

Penalty Stiffness

!22

?
Kj

Penalty Stiffness

Subdomain Hessian:

!23

Hj = ∂2L
∂{ j, j}2 =

∂2Ej

∂ 2
j

∂2Ej

∂ j∂ j

∂2Ej

∂ j∂ j

∂2Ej

∂ 2
j

+ Kj

∂2E
∂ 2

Ω, " = {			, 			 } Ω"Ω# Ω$

∂2Ej

∂ 2
Use − for �Kj≠

DOT Pseudo-code

 While � // gradient residual convergence check [Zhu et al. 2018]| |∇E(xi) | |2 ≥ ϵCN

!24

� // 1st quasi-Newton updateq ← lowRankUpdate(− ∇E(xi))
� // Separate full DoFs to subdomains(q1, q2, . . . , qs) ← separate(q)
� // Back-solve subdomains in parallelrj ← backsolve(qj), ∀j ∈ [1,s]
� // Merge subdomain to full coordinatesr ← merge(r1, r2, . . . , rs)
� // 2nd quasi-Newton updatep ← lowRankUpdate(r)
� // Line-search and updatexi+ 1 ← xi + αp

Decomposed
Initialier

Experiments and Results

Testing Examples

!26

DOT Iteration Growth with Subdomain Count

!27

0 50 100 150 200 250 300
Number of Blocks

10

20

30

40

50

60

70

80

90

Ite
ra

tio
n

C
ou

nt

horse-7K(S)
horse-38K(S)
horse-79K(S)
horse-7K(SS)
horse-38K(SS)
kingkong-18K(SS)
kingkong-48K(SS)
bunny-30K(SS)
kongkong-18K(TSS)
monkey-18K(TSS)
elf-23K(TSS)
hollowCat-24K(TSS)
horse-38K(TSS)

Decompose meshes with METIS [Karypis and Kumar 2009]

Sub-linear growth!

!28

DOT Iteration Process

A Visualization of

DOT’s decomposition:

!29

Before DOT iterations:

DOT Iteration Process

!30

DOT iterations:

DOT Iteration Process

!31

Elf tests

PN L-BFGS-PDDOT

63K nodes, 361K elements,

Time step size: 25ms,

Converged to !10−5CN

!32

Horse test

PN L-BFGS-PDDOT

136K nodes, 642K elements,

Time step size: 25ms,

Converged to !10−5CN

Performance

!33

0 5 10 15 20 25 30
10-1

100

101

102

103

104

0 5 10 15 20 25 30
10-1

100

101

102

103

104

DOT (ours)

PN

LBFGS-H

LBFGS-PD

With 3.7M elements

Log scale

!34

100K tetrahedra,

Time step size: 10ms,

Converged to !

1.9 sec/frame,

10−5CN

!35

147K tetrahedra,

Time step size: 10ms,

Converged to !

3.7 sec/frame,

10−5CN

Conclusion

DOT, optimization time step solver that enables

Robust, efficient, and accurate frame-size time stepping
for challenging large and high-speed deformations with
nonlinear materials.

!36

Thanks! (Source code coming soon)

