

Decomposed Optimization Time Integrator for Large-Step Elastodynamics

Minchen Li^{1,2}, Ming Gao¹, Timothy Langlois², Chenfanfu Jiang¹, Danny Kaufman²

University of Pennsylvania
 Adobe Research

Time Stepping

Optimization Time Integrator

Provide robust simulation

Challenging for:

- large deformation and high-speeds
- Large time step sizes h

*
$$x_p = x^t + hv^t + h^2 M^{-1} f$$
 for implicit Euler

Desiderata

VFX [Smith et al. 2019]

Fabrication

Efficiency

Robustness

ML [Lee et al. 2018], VR/AR, and games

Engineering

Scalability

Accuracy

4

Line-Search Methods **1. Precondition**: $p^i = -P^{i^-1} \nabla E(x^i)$ 2. Line Search: $x^{i+1} = x^i + \alpha p^i$ ensures $E(x^{i+1}) \leq E(x^i)$

Methods vary in P^{l} :

Projected Newton (PN) [Teran et al. 2005] $P^i = \nabla^2 E(x^i)$

L-BFGS-H [Brown et al. 2013]

 P^i = quasi-Newton initialized with $\nabla^2 E(x^t)$

BFGS

L-BFGS-PD [Liu et al. 2017]

 $P^i =$ quasi-Newton initialized with $M + h^2 L$

ADMM-PD [Narain et al. 2016]

1. Elasticity solve on element soup in parallel

 $x^{t+1} = \operatorname{argmin}_{x} E(x) = \frac{1}{2} (x - x_p)^T M(x - x_p) - h^2 W(x)$

Feature Table

100K tetrahedra, Time step size: 10ms, Converged to 10⁻⁵CN 1.9 sec/frame,

Observations

Deformations are local

Articulated Structure

Domain Decomposition

Original simulation domain

Subdomains after decomposition

- Domain decomposition preconditions iterative linear solvers
- Extensions to nonlinear systems with slow convergence

Original simulation domain

Subdomains after decomposition

11

DOT Algorithm

Original simulation domain

Subdomains after decomposition

Original simulation domain

Original copy of interface nodes Subdomain copy of interface nodes

Subdomains after decomposition

14

Original simulation domain

Original copy of interface nodes Subdomain copy of interface nodes

Subdomains after decomposition

Decomposed Penalty Lagrangian $\min \Sigma_{\Omega_i} E_j(\circ, \bullet) \quad s.t. \quad \bullet = \blacktriangle$

$$L(\bullet, \bullet, \bullet) = \Sigma_{\Omega_i} \left(E_j(\bullet, \bullet) + \frac{1}{2} (\bullet - \bullet)^T K_j(\bullet - \bullet) \right)$$

For inner initializer Of LBFGS!

 Ω_3

17

Vector defined on original domain

 (2_3)

Independent per domain back solves

 $\Omega, \ x = \{ \bullet, \blacktriangle \}$

 Ω_3

 Ω_3

Penalty Stiffness

Penalty Stiffness

DOT Pseudo-code

While $\|\nabla E(x^i)\|_2 \ge \epsilon_{CN}$ // gradient residual convergence check [Zhu et al. 2018] $q \leftarrow \text{lowRankUpdate}(-\nabla E(x^i))$ // 1st quasi-Newton update $(q_1, q_2, \ldots, q_s) \leftarrow \text{separate}(q) // \text{Separate full DoFs to subdomains}$ $r_j \leftarrow backsolve(q_j), \forall j \in [1,s] // Back-solve subdomains in parallel$ $r \leftarrow merge(r_1, r_2, \dots, r_s)$ // Merge subdomain to full coordinates $p \leftarrow \text{lowRankUpdate}(r) // 2nd quasi-Newton update$ $x^{i+1} \leftarrow x^i + \alpha p$ // Line-search and update

- Decomposed Initialier

Experiments and Results

Testing Examples

DOT Iteration Growth with Subdomain Count

Decompose meshes with METIS [Karypis and Kumar 2009]

DOT Iteration Process

A Visualization of DOT's decomposition:

DOT Iteration Process

Before DOT iterations:

DOT Iteration Process

DOT iterations:

10-3

Elf tests

DOT

63K nodes, 361K elements, Time step size: 25ms, Converged to 10^{-5} CN

PN

L-BFGS-PD

31

Horse test

DOT

136K nodes, 642K elements, Time step size: 25ms, Converged to 10^{-5} CN

PN

L-BFGS-PD

Performance

100K tetrahedra, Time step size: 10ms, Converged to 10⁻⁵CN 1.9 sec/frame,

147K tetrahedra,
Time step size: 10ms,
Converged to 10⁻⁵CN
3.7 sec/frame,

Conclusion

DOT, optimization time step solver that enables

nonlinear materials.

Robust, efficient, and accurate frame-size time stepping for challenging large and high-speed deformations with

