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3D Geometry Is Challenging

• A canonical representation does not exist

• Most operations are not closed under the floating point 
representation:

• Not handling this results in lack of robustness

• Handling it increases dramatically the algorithmic complexity, 
increasing the chances of implementation errors (which are a 
nightmare to debug)
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Loop over faces 
N(:,:) = 0;

for face f

   for corner vertex i

      N(i) += f’s normal

for vertex i

   N(i).normalize
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Loop over faces 
N(:,:) = 0;

for face f

   for corner vertex i

      N(i) += f’s normal

for vertex i

   N(i).normalize
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CGAL 
57.2%

CGAL 
(no features) 

79.0%

TetGen 
49.5%

DelPSC 
37.1%

Success Rate



Why?

 15



Why?

• Problem statement imposes strong assumptions on the input, which are rare 
in real-data

 15



Why?

• Problem statement imposes strong assumptions on the input, which are rare 
in real-data

• Implementation of a complex algorithm in floating point is a major challenge, 
even if the algorithm is provably correct in arbitrary precision

 15



Why?

• Problem statement imposes strong assumptions on the input, which are rare 
in real-data

• Implementation of a complex algorithm in floating point is a major challenge, 
even if the algorithm is provably correct in arbitrary precision

• Modeling tools use operations not closed under the representation (for 
example trimming for NURBS), introducing a plethora of degenerate 
configurations

 15



Why?

• Problem statement imposes strong assumptions on the input, which are rare 
in real-data

• Implementation of a complex algorithm in floating point is a major challenge, 
even if the algorithm is provably correct in arbitrary precision

• Modeling tools use operations not closed under the representation (for 
example trimming for NURBS), introducing a plethora of degenerate 
configurations

• Large collections of data was not available during the development of these 
methods

 15
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Let’s do it again

• High running times are preferable than a failure, since they enable 
automation 

• Robust floating-point computation is difficult to get right, exact 
computation leads to simpler, but slower, algorithms

• Exact geometry is often not required (and sometimes not desired)
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Quadratic 
Lagrangian 
Tetrahedra

Quadratic 
Lagrangian/Serendipity 

Hexahedra

Quadratic 
Splines on 

Hexahedra (IGA)

1 2 3

Which element is more accurate for a non-linear elasticity problem  
given a fixed wall clock time budget?
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Which discretization provides lower  
running time for a fixed accuracy?

Can you mesh robustly without  
any assumption on the input?

Does mesh quality affect the  
accuracy of the FEM solution?

Tetrahedra :) Yes! No!*



Problem
• Solve elliptic PDE 

subject to 

• For common elliptic PDEs 

• Elasticity (Linear and Non-Linear) 

• Stokes 

• Helmoltz 

• Poisson
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• Hexalab https://www.hexalab.net/ 
• 16 state-of-the-art hex-meshing algorithms 

• 237 meshes 

• 8 flips 3.4% 
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Dataset

• Hexalab https://www.hexalab.net/ 
• 16 state-of-the-art hex-meshing algorithms 

• 237 meshes 

• 8 flips 3.4% 

• Thingi10k 
• 3200 meshes with MeshGems 

• 577 flips 18.0% 

• For a given hex mesh, we generate a tetrahedral mesh with the same number of vertices
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https://polyfem.github.io/tet-vs-hex/plot.html

https://polyfem.github.io/tet-vs-hex/plot.html
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Neo-Hooke – Coarse

 230:00:10 0:00:320:01:03 0:07:46

P1 P2 Q1 Q2
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Neo-Hooke – Dense

 240:14:45 0:46:535:19:43 31:31:49

P1 P2 Q1 Q2
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Hexalab – no-flips
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Hexalab – no-flips
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Tetrahedral Meshing in the Wild

Input Initial mesh OutputOptimized meshValid meshHybrid mesh
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Tetrahedral Meshing in the Wild. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, Daniele Panozzo. 
ACM Transactions on Graphics (SIGGRAPH 2018).

Rational Mixed Double
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7.68

9.91

noise = 0.05

noise = 0.1
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Input CGAL CGAL - no features TetGen DelPSC Quartet Ours

8.008 8.027 0.0115 0.07588 18.3 9.96

1.544 7.031 0.07683 0.04171 18.05 13.27

7.02 7.02 0.6842 0.2172 21.64 12.71

0.4195 7.855 0.01151 0.00186 0.01427 10.20

5.108 7.094 0.0053 0.0 18.45 13.00

2.008 7.005 5.492 0.0 9.276 9.741
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Floating Point Version
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High-Order Geometric Map

 59

• We can also create meshes 
with a high-order geometric 
map to reproduce a set of 
input Bezier curves 

• The runtime increases by 2% 

• We are working on a version 
that can take CAD models as 
input and reproduce the 
input NURBS
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Our Solution
• Locally increase the order of elements

 70

Linear Quadratic

Cubic Quartic
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Refinement

• A posteriori h-refinement 

• Increase the mesh resolution locally 

[Wu 01], [Simnett 09], [Wicke 10], [Pfaff 14], … 

• A posteriori p-refinement 

• Solve, then increase order where necessary 

[Babuška 94], [Kaufmann 13], [Bargteil 14], [Edwards 14], … 

• Ours is a priori p-refinement 

• We increase order only based on the input

 71
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Order of an element

Magic Formula

 73



User parameter, = 3

Magic Formula
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Average edge length
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Base order, usually 1
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1. Use formula 2. Propagate degrees
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Degree Propagation

• For each element E

• Compute k E using formula

• Increase the order  
(if necessary) of:

• The element E
• All edge/face neighbors
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Degree Propagation

• For each element E

• Compute k E using formula 

• Increase the order  
(if necessary) of: 

• The element E 
• All edge/face neighbors
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1. Use formula 2. Propagate degrees

3. Construct C0 basis
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Teseo Schneider

Building Continuous Basis
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1. Use formula 

4. Simulate!

2. Propagate degrees

3. Construct C0 basis
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Large Dataset

• Thingi10k  
[Zhou 17]

• Tetwild  
[Hu 18]

• ~10k Optimized

• ~10k Not Optimized
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L2 norm or average error



FEM Error Estimate
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Exact solution

• Standard L2 error estimate for linear elements



FEM Error Estimate
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Approximated solution

• Standard L2 error estimate for linear elements
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How to Measure Errors?
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Small values are good!

• Standard L2 error estimate for linear elements 

• Different h for every model! 

• L2 Efficiency



Efficiency
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Optimized Not Optimized
L2 efficiency



Degree Distribution
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1. Use formula 

4. Simulate!

2. Propagate degrees

3. Construct C0 basis
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Future Work
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Analysis for elliptic PDEs only. 
Does it make a difference for  

contacts or time-dependent problems?

Meshing still takes way longer than  
the FEM solve. Can we make it real-time? 

Can we use a similar strategy 
to limit/avoid remeshing in 

dynamic simulations?

Maybe Maybe Why not?



Large Scale Comparison
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https://archive.nyu.edu/handle/2451/44221

MIT License



MeshPlot
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https://skoch9.github.io/meshplot/



Interactive Geometry Library (libigl)
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https://libigl.github.io



Wild Meshing (TetWild)
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https://wildmeshing.github.io



PolyFEM
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https://polyfem.github.io
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Geometric Computing in Python
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• Easy to use, integrates meshing, geometry 
processing (libigl), and FEM analysis

• All on Conda, works out of the box on linux, 
mac, windows

• Easy to edit, pure C++

• Based on numpy/scipy



Daniele Panozzo
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