Weaving Geodesic Foliations

Etienne Vouga

University of Texas at Austin

With: Josh Vekhter, Jiacheng Zhuo, Luisa Gil Fandino, Qixing Huang

Research Overview

simulation

cloth, shells crumpling, swellingcontact, friction

What is the relevance to machine learning?

What is the relevance to machine learning?

In computer graphics, we have developed a deep understanding

how to reason about it, discretize

Differential geometry is the language of:

- shape
- deformation
- physics
- symmetries and mappings

Differential geometry is the language of:

- shape
- deformation
- physics
- symmetries and mappings

Yet the use of differential geometry in ML is still naive

Geometry in Machine Learning

Voxelization

- curse of dimensionality
- no surface geometry

Geometry in Machine Learning

Voxelization

- curse of dimensionality
- no surface geometry

Projection onto planes

• inherently 2D...

ML Grand Challenge

How can we learn 3D shape, motion, deformation?

ML Grand Challenge

How can we learn 3D shape, motion, deformation?

Groundbreaking new techniques for learning 3D shape must use the **vocabulary** of shape: discrete differential geometry

This Talk: Key Topics

Discrete vector fields and integrability

Discrete foliations

Discrete geodesics and geodesic fields

Branched covering spaces

Woven Structures: From Small Scale...

Martin

Puryear

Nature Nanochemistry

"Quantum Spin Liquids" - Physics

LVIS/LVIS Jr. stents,

J. NeuroInterventional Surgery 2015

...to architectural

Centre Pompidou-Metz

MINIMA | MAXIMA World Expo Pavillion

Elastic Ribbons Woven Triaxially

Can achieve wide array of shapes, using a wide array of materials.

Our Goal

Given a surface, figure out how to weave it

Our Goal

Given a surface, figure out how to weave it

Will attack this problem in two parts:

1. How do you lay out a **single** family of ribbons on a surface in a "nice" way?

Our Goal

Given a surface, figure out how to weave it

Will attack this problem in two parts:

1. How do you lay out a **single** family of ribbons on a surface in a "nice" way?

2. How do we extend to triaxial weaves?

ribbon behaves as Eulerian beam - small resistance th³out-ofplane bending $O(wh^3)$

ribbon behaves as Eulerian beam

- small resistance t_R^3 out-ofplane bending $O(wh^3)$
- small resistance to twist
- large resistance to in-

plane

bending

ribbon behaves as Eulerian beam

- small resistance t_R^3 out-ofplane bending $O(wh^3)$
- small resistance to twist
- large resistance to in-

plane bending

ribbons must follow

Geodesics Fundamentally Global

Geodesic segments determined by 3 degrees of freedom:

- Start point
- Direction
- Distance

Geodesic Layout Challenge

Tracing one geodesic for a long time "mummifies" the target surface

We want to "evenly" cover a surface with non-intersecting geodes

Foliations

A decomposition of a surface into a union of submanifolds, called

leaves $\theta: M \to S^1$ Or, a submersion

Geodesic Foliations: **Two Views**

submersion $\theta: M \to S^1$ with geodesic isolines

Geodesic Foliations: **Two Views**

submersion $\theta: M \to S^1$ with geodesic isolines

complete vector field $\mathbf{v} \in TM$ with closed geodesic integral curves

Geodesic Foliations: **Two Views**

submersion $\theta: M \to S^1$ with geodesic isolines

(easier for applications)

complete vector field $\mathbf{v} \in TM$ with closed geodesic integral curves

Geodesic Foliation Relaxations

Issue: geodesic foliations usually don't exist (e.g. on the round sphere)

Geodesic Foliation Relaxations

Issue: geodesic foliations usually don't exist (e.g. on the round sphere)

Allow geodesic **almost**-foliations: can delete singularities from

Geodesic Foliation Relaxations

Issue: geodesic foliations usually don't exist (e.g. on the round sphere)

Allow geodesic **almost**-foliations: can delete singularities from

example: gradient of distance function from any point

Ultimate goal: given (discrete) surface, find geodesic almostfoliation

Ultimate goal: given (discrete) surface, find geodesic almostfoliation

This is too hard: we don't know how to discretize the isoline constraint

Ultimate goal: given (discrete) surface, find geodesic alm@stfoliation

Our steps:

- 1. Find vector field that has geodesig integral curves
- 2. Recover by integrating the field: $\min_{\theta,s} \|\nabla \theta - s \mathbf{v}^{\perp}\| \quad \text{s.t.} \quad \|s\| = c.$

 \mathbf{V}

Ultimate goal: given (discrete) surface, find geodesic alm@stfoliation

 \mathbf{V}

Our steps:

1. Find vector field that has geodesig integral curves

2. Recover by integrating the field solution $\min_{\theta,s} \|\nabla \theta - s\mathbf{v}^{\perp}\| \quad \text{s.t.} \quad \|s\| \stackrel{<}{=} c.$ isolines and integral curves parallel

Geodesic Vector Fields

How can we tell if a discrete vector field "has geodesic integral curves"?

Geodesic Vector Fields

How can we tell if a discrete vector field "has geodesic integral curves"?

geodesic equation

$$\nabla_{\mathbf{v}}\mathbf{v}=0?$$
Geodesic Singularities

Singularities are topologically necessary on surfaces of non-zero genus

Geodesic Singularities

Singularities are topologically necessary on surfaces of non-zero

geodesic almost everywhere

Geodesic Singularities

Singularities are topologically necessary on surfaces of non-zero genus Only some singularities are acceptable

Need a definition of discrete geodesic field that is well-defined at "good" singularities

A vector field is **integrable** if it is the gradient of a potential function

 $f(\mathbf{q}) = d(\mathbf{p}, \mathbf{q})$

A vector field is **integrable** if it is the gradient of a potential function

Discrete integrability: per-edge

A vector field is **integrable** if it is the gradient of a potential function

Discrete integrability: per-edge

A vector field is **integrable** if it is the gradient of a potential function

Discrete integrability: per-edge

Discrete Curl

A vector field is **integrable** if it is the gradient of a potential function (locally equivalent conditions $\mathbf{v} = 0$)

Discrete Curl

A vector field is **integrable** if it is the gradient of a potential function (locally equivalent condition $\mathbf{v} = 0$ $(\nabla \times \mathbf{v})_{ij} = (\mathbf{v}_1 - \mathbf{v}_2) \cdot (\mathbf{p}_j - \mathbf{p}_i)$ Discretepcurl:

Discrete Curl: Who Cares?

Geodesic condition can be $\nabla \times \mathbf{v} = 0$ written in terms of vector $\operatorname{cur} \|\mathbf{v}\| = 1$

Discrete Curl: Who **Cares**?

Geodesic condition can be $\nabla \times \mathbf{v} = 0$ written in terms of vector $\operatorname{cur} \|\mathbf{v}\| = 1$

In the smooth setting: there are many curl-free unit fields

 $\nabla \times \mathbf{v} = 0$

 $\|\mathbf{v}\| = 1$

Problem: discretization

overconstrained

In the smooth setting: there are many curl-free unit fields

 $\nabla \times \mathbf{v} = 0$

 $\|\mathbf{v}\| = 1$

Problem: discretization

overconstrained

We define a (discrete, approximately) geodesic field as any solution to: $\min_{\hat{\mathbf{v}},\delta\mathbf{v}} \|\delta\mathbf{v}\|^2 \quad \text{s.t.} \quad \begin{array}{l} \nabla \times (\hat{\mathbf{v}} + \delta\mathbf{v}) = 0 \\ \|\hat{\mathbf{v}}_i\| = 1 \end{array}$

 $\nabla \times \mathbf{v} = 0$

 $\|\mathbf{v}\| = 1$

We show: in the smooth setting $\mathbf{v} = 0$ solutions are exactly those with

We define a (discrete, approximately) geodesic field as any solution to: $\nabla \times (\hat{\mathbf{v}} + \delta \mathbf{v}) = 0$

$$\min_{\hat{\mathbf{v}},\delta\mathbf{v}} \|\delta\mathbf{v}\|^2 \quad \text{s.t.}$$

$$\nabla \times (\hat{\mathbf{v}} + \delta \mathbf{v}) = 0$$

 $\|\hat{\mathbf{v}}_i\| = 1$

 $\nabla \times \mathbf{v} = 0$

= 1

Geodesic Field Design

- 1. Start with initial unit field
- 2. Descend using energy

 $\min_{\hat{\mathbf{v}},\delta\mathbf{v}} \|\delta\mathbf{v}\|^2 + \lambda \|\nabla(\hat{\mathbf{v}} + \delta\mathbf{v})\|^2 \text{ s.t. } \frac{\nabla \times (\hat{\mathbf{v}} + \delta\mathbf{v}) = 0}{\|\hat{\mathbf{v}}_i\| = 1}$

Geodesic Field Design

- 1. Start with initial unit field
- 2. Descend using energy

Results on Disk

For random initial field:

$\min_{\hat{\mathbf{v}},\delta\mathbf{v}} \|\delta\mathbf{v}\|^2 + \lambda \|\nabla(\hat{\mathbf{v}} + \delta\mathbf{v})\|^2 \text{ s.t. } \nabla \times (\hat{\mathbf{v}} + \delta\mathbf{v}) = 0$ **Geodesic Field Design**

- 1. Start with initial unit field
- 2. For j = 0, ...
 - fix $\hat{\mathbf{v}}^{j}$, compute $\hat{\mathbf{v}}^{j+1/2}$

$\min_{\hat{\mathbf{v}},\delta\mathbf{v}} \|\delta\mathbf{v}\|^2 + \lambda \|\nabla(\hat{\mathbf{v}} + \delta\mathbf{v})\|^2 \text{ s.t. } \nabla \times (\hat{\mathbf{v}} + \delta\mathbf{v}) = 0$ **Geodesic Field Design**

1. Start with initial unit field

2. For
$$j = 0, ...$$

• fix $_{\hat{\mathbf{v}}^{j}}$, compute $_{\hat{\mathbf{v}}^{j+1/2}}$

• set

$$\hat{\mathbf{v}}^{j+1} = \frac{\hat{\mathbf{v}}^j + \delta \mathbf{v}^{j+1/2}}{\|\hat{\mathbf{v}}^j + \delta \mathbf{v}^{j+1/2}\|}$$
$$\delta \mathbf{v}^{j+1} = \mathbf{v}^j + \delta \mathbf{v}^{j+1/2} - \mathbf{v}^{j+1/2}$$

Effect of Smoothness Term

Results in 3D

Once we have the vector field, how to trace out the integral curves?

Usual approach: find scalar function \mathbf{v}^{\perp}

Once we have the vector field, how to trace out the integral curves?

Usual approach: find scalar function \mathbf{v}^{\perp}

Once we have the vector field, how to trace out the integral curves?

Once we have the vector field, how to trace out the integral curves?

Two possible obstructions: - local: failure of to be curl-free

Two possible obstructions:

- local: failure **Q**f[⊥] to be curl-free
- global:

Main idea: we care only about the direction of the geodesic field, not the magnitude

Main idea: we care only about the direction of the geodesic field, not the magnitude

Find a scalar function with

$$\nabla \times (s\mathbf{v}^{\perp}) = 0$$

Reuse idea from geodesic field design: $\min_{s,\delta \mathbf{v}^{\perp}} \int \|\delta \mathbf{v}^{\perp}\|^2 \quad \text{s.t.} \quad \nabla \times (s \mathbf{v}^{\perp} + \delta \mathbf{v}^{\perp}) = 0$

Reuse idea from geodesic field design: $\min_{s,\delta\mathbf{v}^{\perp}} \int \|\delta\mathbf{v}^{\perp}\|^2 \quad \text{s.t.} \quad \nabla \times (s\mathbf{v}^{\perp} + \delta\mathbf{v}^{\perp}) = 0$ must bar the trivial solution: $\int s^2 = 1$

Reuse idea from geodesic field design: $\min_{s,\delta\mathbf{v}^{\perp}} \int \|\delta\mathbf{v}^{\perp}\|^2 \quad \text{s.t.} \quad \nabla \times (s\mathbf{v}^{\perp} + \delta\mathbf{v}^{\perp}) = 0$ $\int s^2 = 1$

must bar the trivial solution:

Turns into generalized eigenvector problem

Fixing Global Integrability Failure

Very challenging; no fully satisfying solution exists We use global nonlinear optimization technique initialized with v^{\perp}

Knöppel et al

Integrated Vector Fields

Fixing Global Integrability Failure

Very challenging; no fully satisfying solution exists
We use global nonlinear optimization technique initialized with ↓

Knöppel et al

Result: function $\theta \approx sv^{\perp}$ whose isolines are the designed geodesics

Back to Basketweaving

In a **triaxial weave** ribbons are laid out in three near-parallel families

Topological Weave Singularities

http://images.math.cnrs.fr/Visualiser-la-courbure.html

Topological Weave Singularities

Circulating around singularity permutes the six weave families

Triaxial Weave Design

Design **single** geodesic foliation on **sixfold cover** of original surface

Triaxial Weave Design

Then extract isolines, polish with sim

More Results

A Real Design File

Fabricated Examples

