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Differential geometry is the
language of:

 shape
 deformation

e physics
e symmetries and mappings

Yet the use of differential geometry
INn ML is still naive
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Geometry in Machine
Learning

Voxelization .
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+ curse of dimensionality..méd /i

* no surface geometry Wi

Projection onto planes
* Inherently 2D...




ML Grand Challenge
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deformation ?



ML Grand Challenge

How can we learn 3D shape, motion,
deformation ?

Groundbreaking new techniques for
learning 3D shape must use the
vocabulary of shape: discrete
differential geometry



This Talk: Key Topics

Discrete vector fields and
integrability

Discrete foliations

Discrete geodesics and geodesic
fields

Branched covering spaces



Woven Structures: From
Small Scale...

LVIS/LVIS Jr. stents,

J. Neurolnterventional Surgery 2015

Puryear

— v

Nature nochemiStry

“Quantum Spin Liquids” - Physics



...£t0o architectural

MINIMA | MAXIMA
World Expo Pavillion

. Centre Ppidou—Metz



Elastic Ribbons Woven

Triaxially

Can achieve wide array of shapes,
using a wide array of materials.
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Our Goal

Given a surface, figure out how to
weave it

Will attack this problem in two parts:

1. How do you lay out a single family of
ribbons on a surface in a “nice” way?

2. How do we extend to triaxial
weaves ?
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Physics of Ribbons

ribbon behaves as Eulerian

beam
- small resistanggipgut-of-
plane bending O(wh?)

- small resistance to twist
- large regigtamgce to in-

plane
bending

ribbons must follow



Geodesics
Fundamentally Global

Geodesic segments determined by 3
degrees of freedom:

e Start point 4
e Direction ™

e Distance



Geodesic Layout
Challenge

Tracing one geodesic for a long time
“mummifies” the target surface

We want to “evenly” ”\
cover a surface with \

non-intersecting geode: \\
!




Foliations

A decomposition of a surface into a
union of submanifolds, called
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Geodesic Foliations:
Two Views

submersion g . 3y _s g1 complete vector fieldy ¢ 7M1
with geodesic isolines with closed geodesic

(easier for applications) integral curves
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Geodesic Foliation

Relaxations

Issue: geodesic foliations usually
don’t exist (e.g. on the round
sphere)

Allow geodesic almost-foliations:
can delete singulagities from

example: gradient
L of distance
»function from any

point
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Problem Overview

Ultimate goal: given (discrete)
surface, find geodesic almgst-
foliation

Our steps: v

1. Find vector field that has
geodesig integral curves
2. Recover by integrating thetfiefgsolutio

min |V — svi| st. |s|| = c.

0,s AN

Isolines and integral curves parallel



Geodesic Vector Fields

How can we tell if a discrete vector
field “has geodesic integral
curves” ?
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Geodesic Vector Fields

How can we tell if a discrete vector
field “has geodesic integral
curves” ?

geodesic equation
V,v =07

N



Geodesic Singularities

Singularities are topologically
necessary on surfaces of non-zero

genus
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Geodesic Singularities

Singularities are topologically
necessary on surfaces of non-zero

genus
Only some singularities are

acceptable

Need a definition of discrete
geodesic field that is well-defined
at “good” singularities



Vector Field
Integrability

A vector field is integrable if it is

the gradient of a potential i

P
f(a) =d(p,q)
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Vector Field
Integrability

A vector field is integrable if it is
the gradient of a potential functign

Discrete integrability: per-edge
conditipn / (v1 —v2)-(p; —Pi) =0
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Discrete Curl

A vector field is integrable if it is
the gradient of a potential functign

(locally equivalent condition: v = g

) (V x V)i = (vi = v2) - (B ~ P)
Discretepcurl:
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Problem: discretization
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VXv=_0

Discrete Geodesic vl =1

Fields

We define a (discrete,
approximately) geodesic figld as

any solution to: A
. 2 VX (V+dv)=0
min |[0v]|* s.t. )
X Vil =1

We show: In the smoo;tmset;i@g(gv —0
solutions are exactly those with



VXv=_0

Discrete Geodesic vl =1

Fields

We define a (discrete,
approximately) geodesic figld as

any solution to: A
. 2 VX (V+dv)=0
min |[0v]|* s.t. )
.oy [vif| =1
discrete

g geodesics
@

-

smooth setting discrete setting




Geodesic Field Design
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Geodesic Field Design

1. Start with initial unit figld
2. Descend using energy

min [|6v|2 +A[|V(¥ + 5v)|? 5.

N\

trades off smoothness and geodesic—ness



Results on Disk

For random initial field:
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min [6v]|2 4 M|V + 6|2 5.6~ (V+0v) =0

““Geodesic Field Desigh '

1. Start with initial unit figld

2. For; =0, ...
* fixyJs , computgyitl/2
¢ set
i1 VI oV
v 59 + oviti/2]|

Svitl = vi 4 gvitl/2 _ yitl



Effect of Smoothness
Term

A = 1000 A

0

VX w;



Results in 3D
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Extracting Integral

Curves

Once we have the vector field, how
to trace out the integral curves?

Usual approach: find scalar functign= v+
Extract level sets pf



Extracting Integral

Curves

Two possible obstructions:
- local: fallure ¢f-  to be curl-free
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Extracting Integral

Curves

Two possible obstructions:
- local: fallure ¢f-  to be curl-free
- global:




Extracting Integral

Curves

Sometimes no solution:
flat 2x2 torus

constant vectory

fieldvt = (1,v2)
|
\
|



Fixing Local
Integrability Failure
Main idea: we care only about the

direction of the geodesic field, not
the magnitude



Fixing Local
Integrability Failure

Main idea: we care only about the
direction of the geodesic field, not
the magnitude

Find a scalar functign with

V X (sv) =0
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Fixing Local
Integrability Failure

Reuse Idea from geodesic field

min 7]?5VJ"H s.t. V x (svi+dvh) =0

s,0v-—+

sc =1
must bar the trivial solution: /

Turns into generalized
eigenvector problem
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Fixing Global
Integrability Failure

Very challenging; no fully
satisfying solution exists

We use global nonlinear
optimization technique
initialized witRk,+
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Integrated Vector
Fields




Fixing Global
Integrability Failure

Very challenging; no fully
satisfying solution exists

We use global nonlinear
optimization technique
iInitialized withk,+

Kﬁéppeletal

Result: functiorg ~ sv—+
whose isolines are the
designed geodesics




Back to Basketweaving

In a triaxial weave ribbons are laid
out in three near-parallel families




Topological Weave
Singularities

http://images.math.cnrs.fr/Visualiser-la-courbure.html



Topological Weave
Singularities

Circulating around singularity
permutes the six weave families




Triaxial Weave Design

Design single geodesic foliation on
sixfold cover of original surface




Triaxial Weave Design

Then extract isolines, polish with sim




More Results
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Fabricated Examples










