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Challenge: Partial Observation



Challenge: Partial Observation
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Comprehensive 3D Scene Understanding

Partial Observation Complete 3D Scene
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Comprehensive 3D Scene Understanding

Amodal 3D

[Song and Xiao
ECCV’'14,CVPR’16]

Beyond FoV
[Song et al. CVPR’18]

-Semantics Category

3D Location, Size
*Detailed Geometry

* Inter-Object Relationships
Not Limited by FoV

- Action Affordances

*Phys. Properties ...

ngher Fldellty
[Song et al. CVPR’17]



Comprehensive 3D Scene Understanding

Amodal 3D
[Song and Xiao
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Object Detection

2D Visible (Modal) Surface

Where to sit?

f Aubry etal. CVPR'14 .

bde' B B Dalal and Triggs CVPR'05
‘B Felzenszwalb et al. CVPR'08

Bo et al. CVPR’2011

Malisiewicz et al. ICCV’11

& Girshick et al. CVPR’14

Ren et al. NIPS’15

= Girshick, ICCV'15

' Everingham et al. [JCV'10

He et al. ICCV’'17

Liu et al. ECCV’16

Erhan et al. CVPR’14

He et al. ECCV’'14

Szegedy NIPS'13

Traditional Object Detection Output



Object Detection

2D Visible (Modal) Surface 3D Complete (Amodal) Shape
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Traditional Object Detection Output This work

S. Song and J. Xiao, Sliding Shapes for 3D Object Detection in Depth Images, ECCV 2014
S. Song and J. Xiao, Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images, CVPR 2016



Deep Sliding Shapes
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Input: Kinect Depth Image Output: 3D Bounding Bo



3D Deep learning

3D Recognition

3D Region Proosal



Representation: 3D vs. 2D



Advantage: Exploiting Physical Size

2D Sliding Window 3D Sliding ndow

Multi-scale searching Physical size



Advantage: Handling Occlusion

2D 5liding window 3D Sliding window

Using depth, we can know which part is occluded.
In 3D, we can separate the object from the occluder.



Advantage: Insensitivity to Lighting

Color based detector: miss Sliding Shapes




Results: Deep Sliding Shapes

Input: Single RGB-D Output: 3D Amodal Boxes



Results: Deep Sliding Shapes

Color
Image

Depth
Image

Input: Single RGB-D Output: 3D Amodal Boxes



Data-Driven 3D Scene Understanding

Amodal 3D

[Song and Xiao
ECCV’'14,CVPR’16]

«Semantics Category

3D Location, Size
*Detailed Geometry
*Inter-Object Relationships
*Not Limited by FoV

* Action Affordances

*Phys. properties ...



Data-Driven 3D Scene Understanding

Amodal 3D

[Song and Xiao
'14,CVPR’16]

v Semantics Category

v 3D Location, Size
*Detailed Geometry
*Inter-Object Relationships
*Not Limited by FoV

* Action Affordances

*Phys. properties ...



Data-Driven 3D Scene Understanding

Amodal 3D
[Song and Xiao

ECC\V'14,CVPR'16]

*Only Boxes, No Detailed Geometry
v Semantics Category

-Single Object, No Contextual Information v 3D Location, Size
*Detailed Geometry
*Inter-Object Relationships
*Not Limited by FoV
* Action Affordances
*Phys. properties ...



Data-Driven 3D Scene Understanding

Amodal 3D
[Song and Xiao

ECC\V'14,CVPR'16]

v Semantics Category

v 3D Location, Size
*Detailed Geometry

*Inter-Object Relationships

*Not Limited by FoV

* Action Affordances

*Phys. properties ...

ngher Fldellty
[Song et al. CVPR’17]



CompSxendiittr8cenme € Oljpdtidentities

Input: Output:
Single Depth Map Volumetric Occupancy + Semantic

Song et al. Semantic Scene Completion from a Single Depth Image. CVPR’17



Problem Definition
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Problem Definition

=== visible surface

. free space
occluded space

. outside view
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Problem Definition

& visible surface>
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%_occluded space>
outside view

3D Scene



3D Scene

Problem Definition
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Semantic Scene Completion

Image Segmentation [Long et al. CVPR’15]

Shape Completion [Firman et al. CVPR’17]

shit

BTy




Semantic Scene Completion Network

Prediction: N+1 classes

empty
floor
wall

ceiling

chair

Input: Output:
Single view depth map volumetric occupancy + semantic

Simultaneously predict voxel occupancy and semantics classes by a single forward pass.



Semantic Scene Completion Network

dilated (64,3,1,2) ~
dilated (64,3,1,2)

dilated (64,3,1,2) ~
dilated (64,3,1,2)




Semantic Scene Completion Network

i

dilated (64,3,1,2) ~
dilated (64,3,1,2)

dilated (64,3,1,2) ~
dilated (64,3,1,2)




N

dilated (64,3,1,2) ~
dilated (64,3,1,2)

dilated (64,3,1,2
dilated (64,3,1,2)

N\

Encode 3D space using flipped TSDF

d = distance to the surface

surface e

flipped TSDF = sign(1- min(1, d/dmax))

Occluded

Free space




dilated (64,3,1,2) ~
dilated (64,3,1,2)

dilated (64,3,1,2) ~
dilated (64,3,1,2)

Receptive field: 0.98 m




Semantic Scene Completion Network
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dilated (64,3,1,2) ~
dilated (64,3,1,2)
dilated (64,3,1,2) ~
dilated (64,3,1,2)

Spatially spread
convolution kernels

Capturing higher-level
3D context
by big receptive field

Normal kernel Dilation kernel Recept'i‘illpe field: 2.26



Train on Synthetic 3D Scenes

Synthetic Scenes (SUNCG) Depth Ground Truth



Testing on Real-Word Data (NYU [1,2))

[1] NYU depth v2: Silberman et al. ECCV’12
[2] Ground truth: Guo and Hoiem IJCV’15



Comparis on Real-world Dataset



Comparison on Real-world Dataset

Ground Truth



Comparison on Real-world Dataset

Shape Completion without Semantics
[Firman et al. CVPR’16]
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Comparison on Real-world Dataset
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Model Retrieval+Fitting
[Geiger and Wang GCPR’15]

Missin

Missing
Nightstand



Comparison on Real-world Dataset

SSCNet
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Data-Driven 3D Scene Understanding

Amodal 3D
[Song and Xiao

ECC\V'14,CVPR'16]

v Semantics Category

v 3D Location, Size

v Detailed Geometry

¥ Inter-Object Relationships
*Not Limited by FoV

* Action Affordances

*Phys. properties ...

Prediction is limited by
Camera Field of View

Highér idelity
[Song et al. CVPR’17]



Typical camera
FoV 60 degree

Limited Camera FoV

Small Portion of the Scene is
Observed due to Limited FoV




Data-Driven 3D Scene Understanding

Amodal 3D Beyond FoV
[Song and Xiao [ tal. CVPR'18]
ECCV'14,CVPR'16] song etal

v Semantics Category

v 3D Location, Size

v Detailed Geometry

¥ Inter-Object Relationships
*Not Limited by FoV

* Action Affordances

*Phys. properties ...

ngher Fldellty
[Song et al. CVPR’17]



View Extrapolation

Prior work: Predicting Scene Appearance (Only Colored Pixels)

Learning to Look Around

Image Inpainting User-guided view extrapolation [zhang et al ] Jayaraman and Grauman]

[Pathak et. al]




View Extrapolation
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Ouput2: Semantics

Input: RGB-D images



View Extrapolation

Where can | move?

Where should | turn to find a door? |5

- i
1 - o
)| ¥
19 ’ . rl_.';
] ™ q -l
0l Iy ¢ <5 P
i [ ) nal Y
| B : P
e
O T .
a
i
4

Ouput2: Semantics



Semantic-

Input: RGB-D images



Semantic-Structure View Extrapolation

Input: RGB-D images

Nightstand

Bed
Output: 360° panorama

with 3D structure & semantics

Window




: ii;i;ﬁiil‘;“
Wall

Output: 360° panorama
with 3D structure & semantics




Key idea

Key idea: Indoor environments are often highly structured.

By learning over the statistics of many typical scenes, the model should be
able to leverage strong contextual cues inside the image to predict what
IS beyond the FoV.

Data of indoor Im2Pano3D 3D Structure
: = = .
environments Network + Semantics




Training data

3D House Datasets

Synthetic Houses (SUNCG): Real-Word Houses (Matterport3D):
58,866 RGB-D panoramas 5,315 RGB-D panoramas
Pre-train Fine-tune and test



Data Representation

360 Degree FoV

Depth Panorama



Data Representation

Plane Equation:
ax+by+cz-p=0

Surface No'rné'i (a,c)

Plane Distance to Origin (p) Depth Panorama



Data Representation

Plane Equation:
ax+by+cz-p=0

Surface NorﬁmaIA (a,b,c)

v Pixels on the same planar surface share the
same plane equation.

v Representation is piecewise constant in a
typical indoor environment.

Plane Distance to Origin (p)



Data Representation

Raw Depth Plane
Representation Representation

Prediction

Observation




Im2Pano3D Network

semantics

color
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What training objectives should we use?



rgb

P

Training Objectives



rgb

P
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Training Objectives

Every Pixel is
Correct

softmax

L1

cosine

Prediction

@

Ground truth



rgb

P

Training Objectives

-------------------------------- "

: Real Rooms

Prediction is
Plausible

— Real or Fake

Adversarial loss
Goodfellow et al. 2014



rgb

Training Objectives

———

Similar Scene
Attribute

PP

>| scene category

»| object distribution

wall

floor

ceiling

chair
wall
floor
ceiling
chair

Prediction Ground truth
Liis = Y |ye — h(zc)]



rgb

Training Objectives

Similar Scene
Attribute

—#I—)

| >| scene category

»| object distribution

G: generator Il 'I
Il II

Prediction Ground truth




rgb

PP

Training Objectives

Every Pixel is Similar Scene Prediction is
Correct Attribute Plausible
L?‘*econ Lattribute La,dfv

L = AlLrecon+ )\2Lattm'but€ T )\BLadv



Results



Results

Input Observation
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Results

Prediction Ground truth

ceiling @ wall) floor @ window () bed € door @ cabinet @ chair @ sofa @ tv ¢ table @ object @ furniture



Results

truth
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Object

ceiling @ wall) floor @ window () bed € door @ cabinet @ chair @ sofa @ tv ¢ table @ object @ furniture



ceiling @ wall( floor

Results

Prediction Ground truth

@ window () bed @ door @ cabinet @ chair @ sofa @tv ( table @ object @ furniture



Results

Prediction d truth

ceiling @ wall) floor @ window () bed € door @ cabinet @ chair @ sofa @ tv ¢ table @ object @ furniture



Results

Prediction Ground truth

= I

ceiling @ wall) floor @ window () bed € door @ cabinet @ chair @ sofa @ tv ¢ table @ object @ furniture



Results

Input Observation

ceiling @ wall) floor @ window () bed € door @ cabinet @ chair @ sofa @ tv ¢ table @ object @ furniture



Results

Prediction Ground truth
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 ceiling @ wall() floor @ window € bed € door @ cabinet @ chair @ sofa @tv ( table @ object @ furniture



Camera Configurations in real platforms

One RGB-D Three RGB-D One RGB-D-+motion RGB pano

Not Available




Camera Configurations

One RGB-D Three RGB-D One RGB-D-+motion RGB pano

Input

Not Available

Structure Sematics

ceiling @ wall( floor window bed € door @ cabinet @ chair @ sofa @ tv  table @ object @ furniture



Advances Towards 3D Scene Understanding

- s =
¥ 7
Amodal 3D Beyond FoV
[Song and Xiao y PR’
ECCV'14,CVPR'16] [song et al. CVPR’18]

+ Semantics Category

+ 3D Location, Size

* Detailed Geometry

* Inter-Object Relationships
* Not Limited by FoV

+ Action Affordances

ﬁ%’ W | - Phys. Properties
Higher Fidelity

[Song et al. CVPR’17]



Advances Towards 3D Scene Understanding

« Semantics Category

« 3D Location, Size

* Detailed Geometry

* Inter-Object Relationships
* Not Limited by FoV

+ Action Affordances

* Phys. Properties

+ Dynamics

€ & Higher Fidelity

Passive Observers

Active Explorers



Richer Representation through Interaction

Active Exploration

Inference
Im2Pano3D)

Partial Observation

Guide

Efficient exploration
+ Most useful observation



Richer Representation through Interaction

Active Exploration Active physical Interaction

Partial Observation

E-=——— e -

Actions: Poking,Grasping

Physical properties:
Surface material

Efficient exploration Friction coefficient
+ Most useful observation



Richer Representation through Interaction

Active Exploration Active physical Interaction

Partial Observation

Actions: Pushing,Grasping  ‘Actions: Tossing

Physical properties: Physical properties:
) NERT \ & Surface material Mass distribution,
Efficient Exploration Friction coefficient Aerodynamic

+ Most useful observation



Comprehensive 3D Scene Understanding

+ Semantics Category

+ 3D Location, Size

* Detailed Geometry

* Inter-Object Relationships
* Not Limited by FoV

+ Action Affordances

* Phys. Properties

* Dynamics

p TOR Higher Fidelity Beyond FoV

— 4 lllumination
& L/

Passive Observers

Active Explorer
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