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What can we learn from this video?



Human Physical Scene Understanding

What can we see in this video?

I. Scene structure (perception)

Object appearance (geometry, texture)

Physical properties (e.g., mass)

II. Interactions and events (physics)

Collision, rolling, etc.

III. Concepts and regularity (reasoning)

Balls can roll, but not blocks

Blocks are of the same size and shape

Blocks are lined up in a row

collisions rolling

sphere

orange

plastic

hedge

white/yellow

wooden



Current Machine Scene Understanding

Recognition Synthesis

Image Credit: DeepLab, Chen et al., 2018; CycleGAN, Zhu et al., 2017

AlexNet

ResNet

Deep Learning Models

Top-5 errors on ImageNet over years

Performance



Modeling the Physical World

World State (t-1)

Image (t-1)

Graphics

Object Intrinsics

Geometry

Physical properties

Object Extrinsics

Position

Velocity

Scene Descriptions

Lighting

Camera parameters



Modeling the Physical World

World State (t-1) World State (t) World State (t+1)

Image (t-1) Image (t) Image (t+1)

Physics
… …

Action (t-1) Action (t)
Graphics



Modeling the Physical World

World State (t-1) World State (t) World State (t+1)

Image (t-1) Image (t) Image (t+1)

Physics
… …

Action (t-1) Action (t)

Inverse 

Graphics



Visual Observation Visual Observation

World States World States

Physical World Representations are Universal



Cognitive Science Meets Machine Scene Understanding

Causal structure and cognitive science insights provide 

guidance on building machine scene understanding models:

When and where to use top-down simulation engines vs. 
bottom-up neural networks?

What training targets to use for neural networks? 

What intermediate representations to use? 

What training data to use?

Research in machine intelligence helps to stimulate 
research in human cognition and neuroscience:

Computational models for human behaviors;

Algorithms and representations in the brain.

State (t+1)State (t)

Data (t) Data (t+1)

Perception

Physics

Action (t-1)



Learning to See Physics via Visual De-animation

Wu, Lu, Kohli, Freeman, Tenenbaum. NeurIPS’17



Input What if? Input Future Stabilizing forceReconstruct

Learning to See Physics via Visual De-animation

Wu, Lu, Kohli, Freeman, Tenenbaum. NeurIPS’17



Learning simulation engines themselves

Physical Scene Understanding

Learning to invert a graphics engine

Learning to invert a physics engine

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)

World State

Image

Learning simulation engines themselves

Learning to invert a physics engine

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)



Depth Estimation Shape Completion

Forward: image formation

Inverse: shape estimation Visible Surface

3D Reconstruction



MarrNet: 3D Reconstruction via 2.5D Sketches

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NeurIPS’17

World State

(3D Shape)

2D Image

2.5D Sketches

3D Shape

(a) 2.5D Sketch 

Estimation

(b) 3D Shape Estimation

(c) Reprojection Consistency

…………

2D Image

normal

depth

silhouette

Normal Ball

2.5D Sketches



Comparisons

Images Ground truth MarrNetDRC

Methods IoU

DRC 3D [CVPR ‘17] 0.34

MarrNet 0.38

DRC 3D MarrNet GT

DRC 3D 50 26 17

MarrNet 74 50 42

GT 83 58 50

Percentages of users that preferred 

the left approach to the top one

Intersection over Union (IoU)



Results on PASCAL 3D+

Images MarrNetImages MarrNet Images MarrNet

Wu*, Wang*, Xue, Sun, Freeman, Tenenbaum. NeurIPS’17



Images Ground truth MarrNet Images Ground truth MarrNetMarrNeth M N

Results on IKEA



Ext. I: Incorporating Priors

Wu*, Zhang*, Zhang, Zhang, Freeman, Tenenbaum. ECCV’18

(b) 3D Shape Completion

Depth Shape

(I) Voxel (II) Naturalness

(c) Shape Naturalness

2D 2.5D 3D Prior

DepthImage Shape

(a) 2.5D Sketch Estimation

3D Shape

2D Image

2.5D Sketches

Prior



Input ShapeHD
Best 

alternative
Input ShapeHD

Best 

alternative

3D Shape

2D Image

2.5D Sketches

Prior



Ext. II: Generalization to Unseen Classes

Zhang*, Zhang*, Zhang, Tenenbaum, Freeman, Wu. NeurIPS’18Input Ours Ground Truth

Our results

Trained on chairs, planes, cars

Tested on tables

Input DRC (UCB)
Full 

Spherical Map

Full Spherical 

Map (3D)Depth 
Partial

Spherical Map



Generalization to Novel Classes (Table, Boat, Sofa, Bench, Lamp)

Input Best Baseline Ours Ground Truth



Canonical Viewpoints in Generalization

Accidental views large errors

Accidental Views

Generic Views Elevation φ = π Error(φ, θ)

Azimuth θ = 2π

.157

.076

0

High

Error

Palmer, Rosch, Chase. Atten. Perform. 1981

Low

Error



Top-Down Shape and Texture Synthesis

Zhu, Zhang, Zhang, Wu, Torralba, Tenenbaum, Freeman. NeurIPS’18

shape

code

shape network

3D shape

2.5D sketches

viewpoint texture code

2D image

differentiable projection
texture network

2 5D sketch

tion

3D

2D

3D Shape

Prior

v

Wu*, Zhang*, Xue, Freeman, Tenenbaum. NeurIPS’16

2D Image

2.5D 

Sketches



Zhu, Zhang, Zhang, Wu, Torralba, Tenenbaum, Freeman. NeurIPS’18

viewpoint

texture

Editing viewpoint, shape, and texture

shape

shape

viewpoint

texture

shape

texture

both

Interpolation in the latent space

Image

Shape

Transferring shape and texture

3D Shape

Prior

2D Image

2.5D 

Sketches



Ext. IV: Extension to Scenes

Goal: Recovering a structured, 3D-aware scene representation.

The structured representation allows re-rendering and editing the image.

<seg sky  code=[0.53, -0.60, -0.28…]>

<obj type=car center forward black>

<seg tree code=[0.61, -0.64, -0.22…]>

<obj type=car center forward red>

Semantic + Textural De-render

Textural

Render

Geometric De-render

<seg sky  code=[0.53, -0.60, -0.28…]>

<obj type=car right  forward black>

<seg tree code=[0.61, -0.64, -0.22…]>

<obj type=car right  forward red>

...

...

<seg sky  code=[0.53, -0.60, -0.28…]>

<seg tree code=[0.61, -0.64, -0.22…]>

...

Manipulate

Geometric

Render

scene repre

ndering an



3D Disentangled Scene Representation

Disentangled model for the scene’s semantics, texture, and object geometry and 6DOF pose.

Yao*, Hsu*, Zhu, Wu, Torralba, Freeman, Tenenbaum. NeurIPS’18

Textural De-renderer Textural Renderer 

Geometric De-renderer Geometric Renderer

Semantic De-renderer



Image Editing on Virtual KITTI
Original images Edited images

(a)

(b)

(c)

(d)

Yao*, Hsu*, Zhu, Wu, Torralba, Freeman, Tenenbaum. NeurIPS’18



Image Editing on CityScapes (Real Images)

Original images Edited images

(a)

(b)

(c)

Yao*, Hsu*, Zhu, Wu, Torralba, Freeman, Tenenbaum. NeurIPS’18



Learning simulation engines themselves

Physical Scene Understanding

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

Learning to invert a physics engine

World State (t)

Image (t)

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)

Learning simulation engines themselves

Learning to invert a physics engine

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)



Learning simulation engines themselves

Physical Scene Understanding

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

Learning to invert a physics engine

World State (t)

Image (t)

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)

Learning simulation engines themselves State (t+1)State (t)

Image (t) Image (t+1)

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

World State (t)

Image (t)



Galileo

Wu*, Yildirim*, Lim, Freeman, Tenenbaum. NeurIPS’15

GA

NARA

NB

GB

Sampling
GA

NA NB

GB

…



Results

Wu*, Yildirim*, Lim, Freeman, Tenenbaum. NeurIPS’15



...

...

...

...

...
...
...

Cropped image

Initialize MCMC

-2e+05

-1e+05

0e+00

0 20 40 60
Number of MCMC sweeps

Lo
g 

Li
ke

lih
oo

d

initialization with recognition model random initialization

Generative + Recognition Model

If the model has prior knowledge like humans do…

Inferred mass... ... ... ... ...
... ...



What about?We’ve seen…



Learning Shape Abstractions

Tulsiani, Su, Guibas, Efros, Malik. CVPR’17



Physical Primitive Decomposition

Iron

Wood

Liu, Freeman, Tenenbaum, Wu. ECCV’18



Appearance + Physics

Physics Trajectory

(Very Different)

Visual Appearance

(Very Similar)

Aluminum

(2.87g/ml)

Oak

(0.67g/ml)

Steel

(7.74g/ml)

Pine 

(0.48g/ml)



Physical Primitive Decomposition

Liu, Freeman, Tenenbaum, Wu. ECCV’18

Input Appearance Physics A + P Ground truth

Lower Densities Higher Densities

0.7

0.7 0.7

2.9

0.5

7.7

0.6

8.4

2.5

5.23.5

0.5

1.1

3.1

0.5

1.9



Learning simulation engines themselves

Physical Scene Understanding

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

Learning to invert a physics engine

Inferring object physical properties

Joint modeling of object shape and physics

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)

World State

Image



Learning simulation engines themselves

Physical Scene Understanding

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

Learning to invert a physics engine

Inferring object physical properties

Joint modeling of object shape and physics

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)

World State

Image

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

Learning to invert a physics engine

Inferring object physical properties

Joint modeling of object shape and physics

World State

Data (t) Data (t+1)

World State

Image



Key Features on Dynamics Modeling

Depending on visual content

Modeling uncertainty

??

?



Visual Dynamics

Two temporally-consecutive frames

Input Sampled frames

Prediction

: Probabilistic distribution of the second frame conditioned on the first frame 

Xue*, Wu*, Bouman, Freeman. NeurIPS’16, TPAMI’18



Decomposing Objects into Independently Movable Parts

Identify movable segments

Model their dynamics

Combine the sampled motion

Random

vector

Trainable neural

network

Synthesized

image



K
er
ne

ls

Kernel decoder

…

Motion 

decoder

…

Image 

encoder

Cross convolutionFeature maps

Layered Cross-Convolutional Networks



% of synthetic

labeled as real

Transfer flow 25.5

Ours 31.3

Results on Real Videos

Input Synthesized next frames



Input

Feature

maps

Visualize learned features

Feature maps



DD121

D69

D80:

:

:

Interpretable Latent Representations



Ext. I: Unsupervised Structure Discovery 

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR’19



Ext. I: Unsupervised Structure Discovery 

Input frame
(a) 

Full torso

(b) 

Upper torso

(c) 

Arm
Hierarchical tree structure

(e) 

Left leg

(d) 

Right leg

((a) (b ) (c ) ( d ) (e)

(a)

(b)

(c)

( d )

(e)

Flow field

Full torso

Upper torso

Arm

Left leg Right leg

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR’19



Ext. I: Unsupervised Structure Discovery 

(a) Input frame (c) Full torso (d) Left arm (e) Right arm (g) Right leg(f) Left leg(b) Flow field

1

1 1

1 1

1 1

1 1

(c)

(h) Hierarchical tree structure

(d) (e) (f) (g)

(c)

(d)

(e)

(f)

(g)

(c) Full torso

(d) Left arm (e) Right arm

(f) Left leg (g) Right leg

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR’19



Input frame Next frame Reconstruction (a) Offensive player

(a)

(b) Ball (c) Defensive player Hierarchical tree structure

(b) Ball

(c) Defensive 

player

(a) Offensive  player

(a)    (b ) (c)

(b)

( c )

Ext. I: Unsupervised Structure Discovery 

Xu*, Liu*, Sun, Murphy, Freeman, Tenenbaum, Wu. ICLR’19



Ext II: Planning and Control

Janner, Levine, Freeman, Tenenbaum, Finn, Wu. ICLR’19



Ext II: Planning and Control 

Li, Wu, Tedrake, Tenenbaum, Torralba. ICLR’19



Learning simulation engines themselves

Learning object dynamics in the pixel space

Modeling object dynamics for control

Physical Scene Understanding

Learning to invert a graphics engine

Inferring fine object geometry 

Learning structured shape representations (shape + texture)

Beyond single object, learning scene representations

Learning to invert a physics engine

Inferring object physical properties

Joint modeling of object shape and physics

State (t+1)State (t)

World State

Data (t) Data (t+1)

Image (t) Image (t+1)

World State

Image



Physical Scene Understanding with Compositional Structure

Goal

Explaining and reasoning about data

Approach

Leveraging causal structure to integrate generative, 
forward models with efficient inference algorithms.

Advantages

1. Guiding and facilitating model design.

2. Allowing learning with little or no supervision.

3. Offering rich generalization power.

World State (t-1) World State (t)

Image (t-1) Image (t)

Action (t-1)


