# Unsupervised Learning of Holistic 3D Scene Understanding

**Zhenheng Yang** 

01/10/2019 University of Southern California

## Brief Bio

#### Zhenheng Yang (杨振恒)

- Education:
  - Bachelor of Engineering (BEng), Tsinghua University (2010-2014)
  - Ph.D. candidate: Computer vision, University of Southern California (2014-current)
- Working Experience:
  - Research Intern: Baidu Research USA. (May Aug., 2017)
  - Research Intern: Facebook Research (May Aug., 2018)

# Guidelines

- Introduction
  - Problem statement
  - Challenges
  - Our contributions
- Our work
  - Unsupervised depth estimation
  - Unsupervised optical flow estimation
  - Joint unsupervised learning of geometry and motion

## Introduction

- Problem statement
- Challenges
- Our contributions

#### Problem statement

 Understanding 3D scene layout is a fundamental computer vision problem and has many applications in real life



Augmented reality (AR)



Autonomous driving



Robotics

#### Problem statement

- 3D scene understanding aims at estimating the 3D geometries of the observed scene
- There are many tasks in 3D scene understanding (static, dynamic)



Depth estimation



Segmentation



Motion estimation

# Challenges

• Tedious and sometimes impossible annotations



Sparse LiDAR points

- Geometrical cues are coupled
  - Movement of pixels can be caused by moving camera or moving object

# Our contributions

- Unsupervised learning of 3D geometry (free of annotations)
- Decomposing geometrical cues and joint learning (coupled geometrical cues)

# Works

- Unsupervised learning of static 3D cues
- Unsupervised learning of dynamic 3D cues
- Unsupervised joint learning of motion and geometry with holistic 3D understanding

#### Guidelines

#### Unsupervised depth estimation

- Unsupervised optical flow estimation
- Joint unsupervised learning of geometry and motion

#### Unsupervised learning of static 3D cues



Unsupervised Learning of Geometry with Edge-aware Depth-Normal Consistency, AAAI18' (oral) LEGO: Learning Edge with Geometry all at Once by Watching Videos, CVPR18' (spotlight)

#### Data samples





training





testing

#### Previous work



#### Limitations



(a) Input frame (b) Ground truth (c) Estimation results by Zhou et al. (d) Our results

- Need normal information
- Edge should be incorporated

## Approach



#### Novelties:

- Depth-normal consistency
- Edge awareness

#### Consistency between depth and surface normal

Edge-aware depth-normal consistency

#### Consistency between depth and surface normal



- depth-to-normal: cross-product
- normal-to-depth: dot-product, original depth as reference

## Smoothness

Edge-aware smoothness

$$\mathcal{L}_s(D,2) = \sum_{x_t} \sum_{d \in x,y} |\nabla_d^2 D(x_t)| e^{-\alpha |\nabla_d I(x_t)|}$$
$$\mathcal{L}_s(N,1) = \sum_{x_t} \sum_{d \in x,y} |\nabla_d N(x_t)| e^{-\alpha |\nabla_d I(x_t)|}$$



D/N

# Evaluation (depth)

| Method Test                         |             | Test data Supervision |              |         | Lower the better |       |          |                 | Higher the better   |                   |  |
|-------------------------------------|-------------|-----------------------|--------------|---------|------------------|-------|----------|-----------------|---------------------|-------------------|--|
| Wethod                              | iesi uata   | Depth                 | Pose         | Abs Rel | Sq Rel           | RMSE  | RMSE log | $\delta < 1.25$ | $\delta < 1.25^{2}$ | $\delta < 1.25^3$ |  |
| Train set mean                      |             | $\checkmark$          |              | 0.403   | 5.530            | 8.709 | 0.403    | 0.593           | 0.776               | 0.878             |  |
| Eigen et al.2016 Coarse             |             | 1                     |              | 0.214   | 1.605            | 6.563 | 0.292    | 0.673           | 0.884               | 0.957             |  |
| Eigen et al.2016 Fine               |             | $\checkmark$          |              | 0.203   | 1.548            | 6.307 | 0.282    | 0.702           | 0.890               | 0.958             |  |
| Kuznietsov et al. 2017 supervised   | Figen split | 1                     |              | 0.122   | 0.763            | 4.815 | 0.194    | 0.845           | 0.957               | 0.987             |  |
| Kuznietsov et al. 2017 unsupervised | Eigen spitt |                       | $\checkmark$ | 0.308   | 9.367            | 8.700 | 0.367    | 0.752           | 0.904               | 0.952             |  |
| Godard et al.2017                   | L           |                       | $\checkmark$ | 0.148   | 1.344            | 5.927 | 0.247    | 0.803           | 0.922               | 0.964             |  |
| Zhou <i>et al</i> .2017             |             |                       |              | 0.208   | 1.768            | 6.856 | 0.283    | 0.678           | 0.885               | 0.957             |  |
| Ours                                |             |                       |              | 0.182   | 1.481            | 6.501 | 0.267    | 0.725           | 0.906               | 0.963             |  |
| Train set mean                      |             | 1                     |              | 0.398   | 5.519            | 8.632 | 0.405    | 0.587           | 0.764               | 0.880             |  |
| Godard et al.2017                   |             |                       | ~            | 0.124   | 1.388            | 6.125 | 0.217    | 0.841           | 0.936               | 0.975             |  |
| Vij et al.2017                      | KITTI split | L                     |              | Ξ       | -                | -     | 0.340    | -               | -                   | -                 |  |
| Zhou <i>et al</i> .2017             |             |                       |              | 0.216   | 2.255            | 7.422 | 0.299    | 0.686           | 0.873               | 0.951             |  |
| Ours                                |             |                       |              | 0.1648  | 1.360            | 6.641 | 0.248    | 0.750           | 0.914               | 0.969             |  |

Depth performance comparison with state-of-the-art methods on KITTI dataset

## Evaluation (surface normal)

| Method                   | Mean  | Median | $11.25^{\circ}$ | $22.5^{\circ}$ | 30°   |
|--------------------------|-------|--------|-----------------|----------------|-------|
| Ground truth normal mean | 72.39 | 64.72  | 0.031           | 0.134          | 0.243 |
| Pre-defined scene        | 63.52 | 58.93  | 0.067           | 0.196          | 0.302 |
| (Zhou et al. 2017)       | 50.47 | 39.16  | 0.125           | 0.303          | 0.425 |
| Ours                     | 47.52 | 33.98  | 0.149           | 0.369          | 0.473 |

Normal performance comparison with other methods on KITTI test split

# Visual comparison (outdoor)



# Visual comparison (indoor)



- Reasonable performance for scene with intersecting planes (first, second row)
- Relatively messy results for scenes with only objects (third row)



- We incorporate depth-normal consistency and achieved better estimation results
- Depth and normal results are both improved

#### Guidelines

#### Unsupervised depth estimation

- Unsupervised optical flow estimation
- Joint unsupervised learning of geometry and motion

#### Unsupervised joint learning of edge and geometry



#### Limitation



25

Joint learning of edge and geometry

#### Approach



# Training

- Three subnetworks trained from scratch jointly
  - depth net, pose net and edge net
- Trained on KITTI or Cityscapes videos
- Optimizer: Adam,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.009$ ,  $\epsilon = 10^{-8}$ , learning rate 0.002
- Training time: 6 hours (5 epochs) on Titan X (Pascal)

## **Results (depth)**

|                           |             |             |                                 | -               | 1                   |                |
|---------------------------|-------------|-------------|---------------------------------|-----------------|---------------------|----------------|
|                           |             |             |                                 | 1               |                     |                |
|                           |             |             |                                 | -               |                     |                |
| Method                    | Test data   | Supervision | Abs Rel                         | Lower<br>Sa Rel | the bett<br>RMSE    | er<br>RMSE log |
| Godard <i>et al.</i> [19] |             | Pose        | 0.124                           | 1.388           | 6.125               | 0.217          |
| Zhou <i>et al</i> .[64]   |             |             | 0.216                           | 2.255           | 7.422               | 0.299          |
| Yang <i>et al</i> .[60]   | KITTI split |             | <del>0.</del> 1 <del>6</del> 5- | -1.360          | -6. <del>6</del> 41 | <u> </u>       |
| LEGO                      |             |             | 0.154                           | 1.272           | 6.012               | 0.230          |
| LEGO+CS                   |             |             | 0.142                           | 1.237           | 5.846               | 0.22           |

## Results (normal & edge)



Input image

Li et al.

## Sequence 1



| Input frame | Depth  |
|-------------|--------|
| Edge        | Normal |





#### Guidelines

- Unsupervised depth estimation
- Unsupervised optical flow estimation
- Joint unsupervised learning of geometry and motion

## Unsupervised learning of motion



Occlusion Aware Unsupervised Learning of Optical Flow, CVPR18'

#### Previous work



#### Unsupervised optical flow estimation pipeline

#### Limitation



Optical flow confusion at occlusion/de-occlusion regions

#### Approach



• Explicitly model the occlusion mask to filter out occlusion regions in loss calculation

## Occlusion mask



• Occlusion happens in regions in image 1 that are covered in image 2 <sup>36</sup>

# Evaluation

#### • Performances on different datasets

|     | Methods           | Chairs | KITTI 2012 |      | KITT  | TI 2015 |
|-----|-------------------|--------|------------|------|-------|---------|
|     |                   | test   | train      | test | train | test    |
|     | DSTFlow [41]      | 5.11   | 16.98      | —    | 24.30 | -       |
| ise | DSTFlow-best [41] | 5.11   | 10.43      | 12.4 | 16.79 | 39%     |
| erv | BackToBasic [31]  | 5.3    | 11.3       | 9.9  | -     | _       |
| dns | Ours              | 3.30   | 12.95      | _    | 21.30 | _       |
| Uni | Ours+ft-Sintel    | 3.76   | 12.9       | _    | 22.6  | -       |
| _   | Ours-KITTI        |        | 3.55       | 4.2  | 8.88  | 31.2%   |



Flying chairs data sample



KITTI data sample

## Evaluation



#### Qualitative results on Sintel dataset



Qualitative results on KITTI2012 dataset

#### Summary

- The occlusion issue is explicitly modeled in this work
- We evaluated on various benchmarks outperformed previous SOTA methods
- A step-stone for our joint understanding of static and dynamic scenes

#### Guidelines

- Unsupervised depth estimation
- Unsupervised optical flow estimation
- Joint unsupervised learning of geometry and motion

# Unsupervised joint learning of geometry and motion



Every Pixel Counts: Unsupervised Geometry Learning with Holistic 3D Motion Understanding, ECCV workshop 18' Every Pixel Counts ++: Joint Geometry and Motion Learning with 3D Holistic Understanding, TPAMI submission<sup>1</sup>

## Limitation

- An important assumption of the unsupervised depth learning is the scene being static.
  - All pixel movement is caused by camera motion

• Optical flow represents both camera motion and object motion



## Approach





Every Pixel Counts ++: Joint Geometry and Motion Learning with 3D Holistic Understanding, TPAMI submission

# Approach (HMP)





$$\mathbf{M}_{b}(p_{t}) = \mathbf{V}(p_{t})[\mathbf{T}_{t \to s}\phi(p_{t}|\mathbf{D}_{t}) - \phi(p_{t}|\mathbf{D}_{t})],$$
$$\mathbf{V}(p_{t}) = \mathbb{1}(\sum_{p}(1 - |p_{t} - (p + \mathbf{F}_{s \to t})|) > 0),$$

 $D_t$ 

$$\mathbf{M}_{d}(p_{t}) = \mathbf{V}(p_{t})[\phi(p_{t} + \mathbf{F}_{t \to s}(p_{t})|\mathbf{D}_{s}) - \phi(p_{t}|\mathbf{D}_{t})] - \mathbf{M}_{b}(p_{t})$$
$$\mathbf{S}_{t}(p_{t}) = 1 - \exp\{-\alpha(\mathbf{M}_{d}(p_{t})/\mathbf{D}_{t})\}$$

## Approach (loss terms)





 $\begin{aligned} \text{View synthesis:} \quad \mathcal{L}_{vs}(\mathbf{O}) &= \sum_{p_t} \mathbf{V}(p_t) * s(I_t(p_t), \hat{I}_t(p_t)) \\ &\quad s(I(p), \hat{I}(p)) = (1 - \beta) * |I(p) - \hat{I}(p)| + \beta * (1 - \frac{1}{2} \text{SSIM}(I(p), \hat{I}(p))) \\ \text{Smoothness:} \quad \mathcal{L}_s(\mathbf{O}, \mathbf{W}, o) &= \sum_{p_t} \sum_{d \in x, y} \mathbf{W}(p_t) |\nabla_d^o \mathbf{O}(p_t)| e^{-\alpha |\nabla_d^2 I(p_t)|} \\ \text{HMP consistency:} \quad \mathcal{L}_{mc} &= \sum_{p_t} (1 - \mathbf{S}(p_t)) |\mathbf{M}_d(p_t)|_1, \\ \mathcal{L}_{ms} &= \mathcal{L}_s(\mathbf{M}_d, \mathbf{S}, 1), \\ &\quad \mathcal{L}_{dmc} &= \sum_{p_t} \mathbf{V}(p_t)(1 - \mathbf{S}(p_t)) (|\mathbf{D}_s(p_{sf}) - \hat{\mathbf{D}}_s(p_{st})| \end{aligned}$ 

# Training



- Iterative training:
  - 1. Train DepthNet and MotionNet in an unsupervised approach
  - 2. Train FlowNet in an unsupervised approach
  - 3. Iteratively do:

Fix DepthNet and MotionNet, add HMP loss, train FlowNet Fix FlowNet, add HMP loss, train DepthNet and MotionNet

4. Jointly train all three networks

• Both pre-training and finetuning on unlabeled KITTI videos

## Evaluation

Five tasks to evaluate:

- 1. Depth evaluation (DepthNet)
- 2. Optical flow evaluation (FlowNet)
- 3. Odometry evaluation (MotionNet)
- 4. Motion segmentation (HMP)
- 5. Scene flow evaluation (Depth + Flow)



#### Evaluation (depth)

|                              |                       | I arrived the hetter |        |            |          |                   | Higher the better |                   |  |  |
|------------------------------|-----------------------|----------------------|--------|------------|----------|-------------------|-------------------|-------------------|--|--|
| Method                       | Stereo                |                      | Lower  | the better | F        | Higher the better |                   |                   |  |  |
|                              | Bieles                | Abs Rel              | Sq Rel | RMSE       | RMSE log | $\delta < 1.25$   | $\delta < 1.25^2$ | $\delta < 1.25^3$ |  |  |
| Train mean                   |                       | 0.403                | 5.530  | 8.709      | 0.403    | 0.593             | 0.776             | 0.878             |  |  |
| Zhou <i>et al.</i> [9]       |                       | 0.208                | 1.768  | 6.856      | 0.283    | 0.678             | 0.885             | 0.957             |  |  |
| LEGO [5]                     |                       | 0.162                | 1.352  | 6.276      | 0.252    | 0.783             | 0.921             | 0.969             |  |  |
| Ours (mono depth only)       |                       | 0.151                | 1.448  | 5.927      | 0.233    | 0.809             | 0.933             | 0.971             |  |  |
| Ours (mono depth consist)    |                       | 0.146                | 1.065  | 5.405      | 0.220    | 0.812             | 0.939             | 0.975             |  |  |
| Ours (mono flow consist)     |                       | 0.148                | 1.034  | 5.546      | 0.223    | 0.802             | 0.938             | 0.975             |  |  |
| Ours (mono vis flow consist) |                       | 0.144                | 1.042  | 5.358      | 0.218    | 0.813             | 0.941             | 0.976             |  |  |
| Ours (mono)                  |                       | 0.141                | 1.029  | 5.350      | 0.216    | 0.816             | 0.941             | 0.976             |  |  |
| UnDeepVO [43]                | ✓                     | 0.183                | 1.730  | 6.570      | 0.268    | -                 | -                 | -                 |  |  |
| Godard et al. [8]            | $\checkmark$          | 0.148                | 1.344  | 5.927      | 0.247    | 0.803             | 0.922             | 0.964             |  |  |
| Ours (stereo depth only)     | <ul> <li>✓</li> </ul> | 0.141                | 1.224  | 5.548      | 0.229    | 0.811             | 0.934             | 0.972             |  |  |
| Ours (stereo depth consist)  | ✓                     | 0.134                | 1.063  | 5.353      | 0.218    | 0.826             | 0.941             | 0.975             |  |  |
| Ours (stereo)                | $\checkmark$          | 0.128                | 0.935  | 5.011      | 0.209    | 0.831             | 0.945             | 0.979             |  |  |

## Evaluation (depth)





## Evaluation (optical flow)

|                                | KITT  | TI 2012 | KITTI 2015 |        |        |        |  |  |
|--------------------------------|-------|---------|------------|--------|--------|--------|--|--|
| Method                         | Train | Test    | Train      |        | Test   |        |  |  |
|                                | all   | all     | all        | bg     | fg     | all    |  |  |
| DSTFlow [14]                   | 10.43 | 12.40   | 16.79      | -      | -      | 39.00% |  |  |
| Unflow-CSS [54]                | 3.29  | -       | 8.10       | -      | -      | -      |  |  |
| OccAwareFlow [6]               | 3.55  | 4.20    | 8.88       | -      | -      | 31.20% |  |  |
| Multi-frame [80]               |       | -       | 6.59       | 22.67% | 24.27% | 22.94% |  |  |
| GeoNet [45]                    | -     |         | 10.81      |        |        |        |  |  |
| DF-Net [78]                    | 3.54  | 4.40    | 8.98       | -      | -      | 25.70% |  |  |
| Adversarial-Collaboration [62] |       |         | 7.76       |        |        |        |  |  |
| Ours (mono)                    | 2.30  | 2.6     | 5.84       | 20.61% | 26.32% | 21.56% |  |  |
| Ours (stereo)                  |       | -       | 5.66       |        |        | -      |  |  |

# Evaluation (optical flow)



#### Evaluation (odometry)

| Mathada                 |             | Seq. 09                 | Seq. 10     |                         |  |
|-------------------------|-------------|-------------------------|-------------|-------------------------|--|
| wiethous                | $t_{err}\%$ | $r_{err}(^{\circ}/100)$ | $t_{err}\%$ | $r_{err}(^{\circ}/100)$ |  |
| Zhou <i>et al</i> . [9] | 30.75       | 11.41                   | 44.22       | 12.42                   |  |
| GeoNet [46]             | 39.43       | 14.30                   | 28.99       | 8.85                    |  |
| EPC++ (mono)            | 3.72        | 1.60                    | 6.06        | 2.22                    |  |



#### Evaluation (motion segmentation)

|                         | pixel acc. | mean acc. | mean IoU | f.w. IoU |
|-------------------------|------------|-----------|----------|----------|
| Explainability mask [9] | 0.61       | 0.54      | 0.38     | 0.64     |
| Yang et al. [7]         | 0.89       | 0.75      | 0.52     | 0.87     |
| Ours(mono)              | 0.94       | 0.40      | 0.36     | 0.92     |
| Ours(stereo)            | 0.90       | 0.65      | 0.47     | 0.84     |



#### Evaluation (scene flow)

| Mathad          |       | D1    |       |       | D2    |       |       | FL    |       |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Method          | bg    | fg    | bg+fg | bg    | fg    | bg+fg | bg    | fg    | bg+fg |
| Yang et al. [7] | 23.62 | 27.38 | 26.81 | 18.75 | 70.89 | 60.97 | 25.34 | 28.00 | 25.74 |
| Ours (mono)     | 30.67 | 34.38 | 32.73 | 18.36 | 84.64 | 65.63 | 17.57 | 27.30 | 19.78 |
| Ours (stereo)   | 22.76 | 26.63 | 23.84 | 16.37 | 70.39 | 60.32 | 17.58 | 26.89 | 19.64 |



- Add more geometrical constrains
- Decouple different geometrical cues (depth, normal, edge)
- Joint learning of multiple tasks is very helpful
- Decompose the background and dynamic motion

Thank you!