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What is 3D Object Detection?

Figure from ICCV17 paper 2d-driven 3d object detection.
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What is 3D Object Detection?

Input: RGB-D data

“D” can be sparse point cloud from LiDAR or dense
depth map from indoor depth sensors

Output: Amodal 3D bounding boxes and semantic class
labels for objects in the scene

|II

“amodal” means the 3D box is for the “complete”
object even if part of it is invisible.

3D box parameterization: €z, Cy, Cz h,w,l 0,0,



What is 3D Object Detection?

Evaluation Metric: Average Precision (AP) with a 3D
Intersection over Union (loU) thresholdC
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What is 3D Object Detection?

Evaluation Metric: Average Precision (AP) with a 3D
Intersection over Union (loU) thresholdC
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Previous Work (1/2)

* 3D based object proposal + classification
* Con: Make no use of state-of-the-art RGB detectors
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MV3D by Chen et al. Deep Sliding Shapes by Song et al.
Bird-eye view proposal (hard to detect smaller objects 3D CNN region proposal (huge search space,
like pedestrian and cyclists) expensive computation)

3D Proposal Network




Previous Work (2/2)

* RGB or RGB-D image based object detection

* Con: Perspective projection makes it hard to infer precise 3D
information such as object depth and size
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CVPR17 paper by Mousavian et al. CVPR17 paper by Deng et al.
Use size prior and projection error as supervision for ~ Use 2D CNNs to generate region proposals from RGB and depth
3D object detection from monocular RGB image. images. Regress to 3D box based on an initialization from 2D

depth map region.



Our work:
Frustum PointNets for 3D Object Detection
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Our work:
Frustum PointNets for 3D Object Detection

2D region (from CNN) to 3D frustum _

+ Leveraging mature 2D detectors for region proposal. 3D search space reduced.
+ Solving 3D detection problem with 3D data and 3D deep learning architectures.



Our method ranked No. 1 on KITTI 3D Object
Detection Benchmark

3D AP for Cars
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0578 65.11 +8.0% to previous SOTA
62.35
AVOD: Multi-view + CNNs (U. Waterloo)
VxNet: PointNet + 3D CNN (Apple)
MV3D: Multi-view + CNNs (Baidu. previous
SOTA at CVPR’17)
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Our method ranked No. 1 on KITTI 3D Object
Detection Benchmark
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Ours AVOD VxNet
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After ~1.5 years, our method still ranks No. 1

iIn pedestrian detection

Pedestrian

our method

~ Method

Setting = Code
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Hard

Runtime

Environment

Compare

F1 F-PointNet

C. Qi, W. Liu, C. Wu, H, Su and L. Guibas: Frustum

code

44.89 %

51.21 %

| 40.23%

0.17 s

GPU @ 3.0 Ghz (Python)

rXiv:1711.08488 2017.

¥ IPOD

7. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: IPOD: Intensive P

GPU @ 2.5 Ghz (Python + C/C++)

rRivi1812.05276 2018,

3 PointPillars

43.53%

52.08 %
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J. Ku, M. Mozifian, J. Lee, A. Harakeh and 5. Waslander: Joint 30 Proposal C-'eneraﬁm and't:lbject Dem:ﬂnn from Yiew Aggregation. IROS 2018.
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42.81% | 50.80%

. 40.88 %

0.1s

1080ti GPU and Intel i7 CPU

Titan X (Pascal)

5 | 'SECOND
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Y. Yan, Y. Mao and B. Li: SECOND: $parsely Embedded Convolutional Detection. Sensors 2018.
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http://www.cvlibs.net/datasets/kitti/eval_object.php?0obj_benchmark=3d




Frustum-based 3D Object Detection: Challenges
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Frustum-based 3D Object Detection: Challenges

o

Background
Clutter

Foreground
occluder

camera

* Occlusions and clutters are common in frustum point clouds
* Large range of point depths



Frustum PointNets

Use PointNets for data-driven object detection in frustumes.
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Frustum PointNets

Use PointNets for data-driven object detection in frustums.

Depth

point cloud
in frustum
(n points)

segmented
object points
(m points)

mxc

RGB image

Box Parameters

& ¢
et
i~

Frustum Proposal iﬁi%: Amodal 3D Box Estimation

3D Instance Segmentation



Frustum Proposal

Propose 3D frustums for objects by 2D region proposals in images and depth
data back projection.




Frustum Proposal
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Input: RGB-D data




Frustum Proposal

Input: RGB-D data

———————————————————

2d region
roposal

Image region proposal using a 2D
detector on RGB images (high resolution)
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Frustum Proposal

£ emmmmmssmoocooooooo N Input: RGB-D data

§ :I 2d region ‘:

o roposal ) Image region proposal using a 2D

£ g i detector on RGB images (high resolution)
@ '] CNN 5

o = Frustum proposal by lifting a 2D region
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! into a 3D frustum.
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Frustum Proposal




Frustum Proposal

e e . Input: RGB-D data
= ‘
8 : 2d region ‘:
o roposal ) Image region proposal using a 2D
(o)) I S . . . .
e g | | pointcloud detector on RGB images (high resolution)
= S 2 in frustum
D) : CNN = . (n points)
- i = Frustum proposal by lifting a 2D region
/
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into a 3D frustum.
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Frustum Proposal
Points in the frustum are extracted and

are called a frustum point cloud.




3D Instance Segmentation in Frustums

Localize object in frustum by point cloud segmentation.
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3D Instance Segmentation in Frustums

point cloud
in frustum
(n points)

nXxc

Input: frustum point cloud



3D Instance Segmentation in Frustums
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Input: frustum point cloud
Point cloud binary segmentation with PointNet: object of interest v.s. others



3D Instance Segmentation in Frustums

point cloud
in frustum
(n points)

Input: frustum point cloud

nXxc

______________
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3D Instance
Segmentati
on PointNet
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mxc

segmented
object points
(m points)

Point cloud binary segmentation with PointNet: object of interest v.s. others
Points that are classified as object points are extracted for the next step.



3D Instance Segmentation in Frustums

point cloud
in frustum
(n points)

______________

3D Instance

one-hot class vector

Input: frustum point cloud

» Segmentati

—>| on PointNet

>

mxc

segmented
object points
(m points)

Point cloud binary segmentation with PointNet: object of interest v.s. others
Points that are classified as object points are extracted for the next step.



Amodal 3D Box Estimation

Estimate 3D bounding boxes from segmented object point clouds.




Amodal 3D Box Estimation

segmented
object points
(m points)

mxc

Input: object point cloud



Amodal 3D Box Estimation

__________________
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Input: object point cloud
A regression PointNet estimates amodal 3D bounding box for the object



Frustum PointNets
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Frustum PointNets

g4 D O ) 4 )
8 point cloud segmented
in frustum PointNet object points . .
. (n points) (m points) PointNet 5
2 2D Detector + Depth Instance 3
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g Network 8

Frustum Proposal 3D Instance Segmentation \ Amodal 3D Box Estimation

In comparison with Mask R-CNN

Mask R-CNN: 2D box -> 2D segmentation

Naive 3D version of Mask-RCNN: 2D box -> 2D segmentation -> 3D amodal box
Frustum PointNets: 2D box -> 3D frustum -> 3D segmentation -> 3D amodal box




Frustum PointNets: Key to our Success

* Representation. We use PointNets for 3D estimation in
raw point clouds.

* Coordinates Normalization. A series of coordinate
transformations canonicalize the learning problems.

* Loss function. We design specialized loss functions for
3D bounding box regression.
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Frustum PointNets: Key to our Success

* Representation matters — 2D v.s. 3D
An alternative representation for 3D object detection is RGB-D image.

Instead of instance segmentation in 3D, we can segment objects in 2D image.

2d mask by CNN points from masked
. 2d depth map
(baseline)
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Frustum PointNets: Key to our Success

* Representation matters — 2D v.s. 3D
An alternative representation for 3D object detection is RGB-D image.
Instead of instance segmentation in 3D, we can segment objects in 2D image.

2d mask by CNN points from masked points from our 3d

2d depth map  instance segmentation
(baseline) |
N |
8 4

range: 9m ~ 55m range: 12m ~ 16m

44



Frustum PointNets: Key to our Success

* Representation matters — 2D v.s. 3D

Comparing 2D and 3D methods.

network arch. mask | depth representation | accuracy
ConvNet - image 18.3
ConvNet 2D image 27.4
PointNet - point cloud 33.5
PointNet 2D point cloud 61.6
PointNet 3D point cloud 74.3
point cloud

PointNet

dataset: KITTI; metric: 3D bounding box estimation accuracy (%) under loU 0.7

2D+3D

70.0
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Frustum PointNets: Key to our Success

* Representation. We use PointNets for 3D estimation in
raw point clouds.

* Coordinates Normalization. A series of coordinate
transformations canonicalize the learning problems.

* Loss function. We design specialized loss functions for
3D bounding box regression.



Frustum PointNets: Key to our Success

e Canonicalize the problem with coordinate normalizations

(a) camera
coordinate
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(a) camera
coordinate
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Frustum PointNets: Key to our Success

e Canonicalize the problem with coordinate normalizations

/
' frustum
1 / -
* /- rotation

(a) camera (b) frustum
coordinate coordinate
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Frustum PointNets: Key to our Success

e Canonicalize the problem with coordinate normalizations

/ / .
',/ frustum // mask point
) / - - 1 /
= rotation centroild :* -

(a) camera (b) frustum (c) 3D mask
coordinate coordinate coordinate
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Frustum PointNets: Key to our Success

e Canonicalize the problem with coordinate normalizations

/ / .
',/ frustum // mask point
) / - -
* - rotation centroid

(a) camera (b) frustum (c) 3D mask (d) 3D object
coordinate coordinate coordinate coordinate
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Frustum PointNets: Key to our Success

e Canonicalize the problem with coordinate normalizations

oo A frustum rot. | mask centralize
' ./‘ " ’ 1
7 /" frustum ',’ // mask point{ B B
i/ rotation y centroid  1* / Vv -
’ ; v Vv
(a) camera (b) frustum (c) 3D mask (d) 3D object
coordinate coordinate coordinate coordinate

dataset: KITTI; metric: 3D bounding box estimation accuracy (%) under loU 0.7
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Frustum PointNets: Key to our Success

* Representation. We use PointNets for 3D estimation in
raw point clouds.

* Coordinates Normalization. A series of coordinate
transformations canonicalize the learning problems.

* Loss function. We design specialized loss functions for
3D bounding box regression.



Loss Functions for 3D Box Regression

A 3D bounding box is parameterized by its center Cz, Cy,C. ,
its size h,w, [ and its orientation 0, @, 1 relative to a
canonical pose for each category.



Loss Functions for 3D Box Regression

A 3D bounding box is parameterized by its center Cz, Cy,C. ,
its size h, w, [ and its orientation 0, @, relative to a
canonical pose for each category.

In our case we assume an object sits on a flat plane and only
estimate the orientation § around the up-axis.



Loss Functions for 3D Box Regression

* Instead of regressing to absolute values, we use a hybrid of
classification and regression (cls-reg) formulation.

(a) class NH-1
class ... Y “residual angle
class 0
class 1

3d box templates

(b)




Loss Functions for 3D Box Regression

* Instead of regressing to absolute values, we use a hybrid of
classification and regression formulation.

* A regularizing loss (corner loss) for joint optimization of center, size
and heading angle

C
(@) class NH-1 (©) \
I
¢-~~ - 'f I
class . residual angle \ p Y. :
Class 0 / .
e ]
]

class 1
I
I
[
.......... 4
corner loss:

sum of distances between
3d box templates corresponding box corners

(b)

/




Loss Functions for 3D Box Regression

* Instead of regressing to absolute values, we use a hybrid of
classification and regression formulation.

* A regularizing loss (corner loss) for joint optimization of center, size
and heading angle

* Multi-task learning

Limulti—task :Lseg . A(Lcl—reg = Lc?—reg + Lp—cis+
Lh—reg -+ LS-L‘:L’S -+ Ls—*r'eg + ’}’Lcarner)



Loss Functions for 3D Box Regression

loss type regularization | accuracy
regression only - 62.9
cls-reg - 71.8
cls-reg (normalized) - 72.2
cls-reg (normalized) corner loss 74.3

Table 8. Effects of 3D box loss formulations. Metric 1s 3D box
estimation accuracy with IoU=0.7.



Frustum PointNets: Key to our Success
Respect and exploit 3D

* Representation matters — using 3D representation and 3D deep
learning for the 3D problem.

* Canonicalize the problem — exploiting geometric transformations
in point clouds.

* Special 3D loss functions.
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Qualitative Results
(on KITTI and SUN-RGBD)



KITTI Results: Qualitative

Remarkable box estimation accuracy
even with a dozen of points or with very
partial point clouds.



KITTI Results: Qualitative

Correct segmentation in point clouds with
heavy occlusion.
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In-accurate box regression with
too few LiDAR points

Image features could help.



KITTI Results: Qualitative

(===

Missing 2D detection results in
no 3D detection

Multiple ways for proposal
could help (e.g. bird’s eye view,
multiple 2D proposal networks)




KITTI Results: Qualitative

— i — ——

Strong occlusion. Just 4 LiDAR \ | i
points.. \; e

Challenging case for instance
segmentation (multiple closeby
objects in a single frustum)




KITTI Results: Qualitative

Missed 2D detection in a
complicated scene with strong
occlusions

Challenging segmentation cases







Image
(2D detections)

Point cloud
(3D detections)

SUN RGB-D Results

Our method can be directly applied to indoor RGB-D data

69



SUN RGB-D Results

Our method can be directly applied to indoor RGB-D data

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet | Runtime

DSS [29] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 535 503 789 19.55s
COG [24] 58.3 63.7 31.8 62.2 45.2 195 274 51.0 513 70.1 § 10-30min
2D-driven [13] 43.5 64.5 314 483 279 259 41.9 504 370 804 4.15s
Ours (v1) 43.3 81.1 33.3 64.2 247 32.0 58.1 61.1 51.1 909 0.12s

Compared with previous state-of-the-arts our
method is 6.4% to 11.9% better in mAP as well
as 10x to 1000x faster



Conclusion

* We propose Frustum PointNets — a novel framework for 3D object
detection with 3D deep learning.

* We show how we can train 3D object detectors under our framework which
achieve state-of-the-art performance on standard 3D object detection
benchmarks.

* We provide extensive quantitative evaluations to validate our design
choices as well as rich qualitative results for understanding the strengths
and limitations of our method.

Code on GitHub:
https://github.com/charlesq
34/frustum-pointnets

2D region (from CNN) to 3D frustum _ %



