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The Papers and Collaborators

* FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
(CVPR’18 Spotlight)

* Mining Point Cloud Local Structures by Kernel Correlation and Graph
Pooling (CVPR’18)

* Thank my collaborators for their support (including these slides)!

Dr. Chen Feng Dr. Yiru Shen Dr. Dong Tian This’s me!
NYU Facebook InterDigital



Code available:
http://www.merl.com/research/license#FoldingNet
http://www.merl.com/research/license#KCNet

Videos of the slides available:
https://www.youtube.com/watch?v=x1dAV4tP200



http://www.merl.com/research/license
http://www.merl.com/research/license
https://www.youtube.com/watch?v=x1dAV4tP2oo

Deep Learning on 3D Data

* Why 3D Deep Learning
* Intrinsically different than images — E.g. unorganized/unordered
* An important data format — many application domains

Robotics Graphics/3DP Mechanical Engineering Civil Engineering Geospatial Science




3D Input Representation

Voxel Multi-view Point Cloud/Mesh
v' 3D CNN v' 2D CNN v' Raw format/Efficiency
* Implicit representation * Generalize to points? * Explicit representation
x Resolution/Scalability x Large networks x Unorganized/Unordered

https://www.planetminecraft.com/ http://photoboothexpo.com/ https://elmoatazbill.users.greyc.fr/
project/giant-snowman-1638162/ bullet-time-photo-booths/ point_cloud/reconstruction.png



FoldingNet

* Related works

* Conventional AutoEncoder

* Intuition — Paper Folding Operations
* FoldingNet Decoder Diagram

* Learned Folding Profiles

* ATheorem

Yang, Yaoqging, Chen Feng, Yiru Shen, and Dong Tian. "Foldingnet: Point cloud auto-encoder via
deep grid deformation." In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), vol. 3. 2018.



What are we trying to do?

3D Data (Point Clouds) Latent space

Unsupervised learning: reducing label cost, generation



Related Works: Deep Learning on Points
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* MoNet [Monti et al., CVPR’17]
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¢ Edge-COnd Graph CNN [Simonovsky et al., CVPR'17]
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Related Works: Unsupervised 3D Deep Learning

* 3D-GAN [Wu et al., NIPS'16] j@j%ﬁz_‘-%f:? ﬂ iiiii
* Voxel-based
* Deconvolution-based decoder Z e

* Latent-GAN [Achlioptas et al., arxiv’17] > Pu—
* Sort 3D points by lexicographic order x— E G -4 D —x
1D CNN encoder —‘ z /'*<D>

» 3-fully-connected-layer decoder

* Point Set Generation Net [Fan et al., CVPR’17]
» Supervised single image to point set
e Deconvolution-based decoder




Baseline Auto-encoder Framework
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Intuition of FoldingNet: Elastic Paper Folding

* 3D point clouds are often obtained from object surfaces
* Discretized from CAD models
* Sampled from line-of-sight sensors

* 3D object surfaces are intrinsically 2D-manifolds

* Can be transformed from a 2D plane, through the Origami operations
* This 2D-3D mapping is known as parameterization/cross-parameterization

Stretch



FoldingNet Auto-encoder Framework
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Learned Folding Profile - Sofa

Folding Creases (Curvature)

Tear/Stretch (Neighbor Distance)

Folding Animation: Sofa
(colored by curvature)

Videos of the slides available at:

https://www.youtube.com/watch?v=x1
dAV4tP2o0
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https://www.youtube.com/watch?v=x1dAV4tP2oo
https://www.youtube.com/watch?v=x1dAV4tP2oo

Learned Folding Profile - Airplane

Folding Creases (Curvature)

Folding Animation: Airplane
(colored by curvature)

Stretch (Neighbor Distance)

14



Learned Folding Profile - Airplane

Tear/Stretch
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Learned Folding Profile - Chair

.ﬁ

Tear/Stretch
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But, can one DNN approx. multiple 2D-3D mappings?

* Universal Approximation Theorem directly tells us:
* A specific 2-layer MLP can approximate a specific 2D-3D mapping.

* Our theorem says:

* Asingle 2-layer MLP can be “tuned” by the input “codeword” to approximate
multiple arbitrary 2D-3D mappings.

17



FoldingNet Experiments

* Training Process Visualization
* Codeword Space Visualization
* Shape Interpolation

* Transfer Classification

e Semi-supervised Learning

e Ablation Study



Training Process Visualization

Input SK iters 10K iters 20K iters 40K iters 100K iters 500K iters ~ 4M iters

Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surfaces of point clouds.

19



Videos of the slides available at:

Tra | N | N g P FOCesSS V| d eo https://www.youtube.com/watch?v=x1

dAV4tP200

ModelNet
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https://www.youtube.com/watch?v=x1dAV4tP2oo
https://www.youtube.com/watch?v=x1dAV4tP2oo

Codeword Space Visualization
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Figure 2. The T-SNE clustering visualization of the codewords
obtained from FoldingNet auto-encoder.



Shape Interpolation

Source Interpolations

Table 3. Illustration of point cloud interpolation. The first 3 rows: intra-class interpolations. The last 3 rows: inter-class interpolations. 22



Shape Interpolation Video

table to table

car to car

—/

chair to chair

table to table

Videos of the slides available at:

https://www.youtube.com/watch?v=x1

dAV4tP200

car to car
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https://www.youtube.com/watch?v=x1dAV4tP2oo
https://www.youtube.com/watch?v=x1dAV4tP2oo

Transfer Classification

Method MN40 MNIO

SPH [20] 68.2% 79.8%

LFD [5] 75.5% 719.9%

T'L NEtWGrk [ 19 ] ?44% B Chamf_er distance v.s. classification accuracy on Mnde_lNeM:D

VConv-DAE [45] 75.5% 80.5% o "3
3D-GAN [56]  83.3% 91.0% . 1005 &
Latent-GAN [I]  85.7% 95.3% 5°% [005 2
FoldingNet (ours) 88.4% 94.4% < 0045 5
Table 5. The comparison on classification accuracy between Fol- g e [004 8
dingNet and other unsupervised methods. All the methods train & 10.035 *%
a linear SVM on the high-dimensional representations obtained ° 075 10.03 E
from unsupervised training. 0.025 &

0 50 100~ 150 200 250
Training epochs
24



Semi-supervised Learning

C1Ia_55|f|catmn Accuracy v.s. Number of Labeled Data , A *_5?# '_,;‘ » 3&

-ll'..-
-
—

Classification Accuracy

10°
Available Labeled Data/Overall Labeled Data

Figure 4. Linear SVM classification accuracy v.s. percentage of

available labeled training data in ModelNet4(0 dataset.
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Ablation: Decoder Variations

Grid Setting | #Folds | Test Cls. Acc. | Test Loss
 Comparing FC decoder with Folding decoder regular 2D 2 88.25% 0.0296
| - regular 2D 3 88.41% 0.0290
> lo.0us 2 regular 1D 2 86.71% 0.0355
S 085 N S 2 regular 3D 2 88.41% 0.0284
< g | 004 © uniform 2D 2 87.12% 0.0321
2 08} — Folding decoder a - - — :
E - = FC decoder - Table 6. Comparison between different FoldingNet decoders.
R A P 190% 2 “Uniform™: the grid is uniformly random sampled. “Regular”:
Co7sh 3 the grid is regularly sampled with fixed spacings.
! 1003 g
0 100 20 S0 400 : Cl. Acc. Tst. Loss # Params.

Training epochs - &
Figure 5. Comparison between the fully-connected (FC) decoder FDldlI‘lgNEt 88.41% 0.0296 1.0x10 .
in [ 1] and the folding decoder on ModelNet40. Deconv 88.806% 0.0319 1.7x IU'E'

Table 7. Comparison of two different implementations of the fol-
ding operation.
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Take Home Message

* 3D point clouds are often obtained from object surfaces

* Thus they can be transformed from one or multiple 2D planes

* FoldingNet enables data-driven learning of such transformations
* It is unsupervised: reducing labeling cost, generating point clouds

* Potential Learning-based Applications:
e 3D Scan/Model Retrieval

 Surface Repairing/Completion/Reconstruction
* Scene Generation



Feature Mining on Point Clouds: Kernel
Correlation and Graph Pooling

28



Graph-based Encoder

Local Geometric Structure Local Feature Structure
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Learning Local Geometric Structures over Graphs

e | ocal geometric structures learning

m Kernel correlation, measures geometric affinity of point sets
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Learning Local Geometric Structures over Graphs

e | ocal geometric structures learning

m Kernel correlation, measures geometric affinity of point sets

L ® --..ﬁ\ Image kernel
H ,
* Current point ’

A ‘
® N ighb [;‘/)* “ *
earest nei ors -
B 1‘ li! A ",

-
******



Learning Local Geometric Structures over Graphs

e | ocal geometric structures learning
m Kernel correlation, measures geometric affinity of point sets

K
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Learning Local Geometric Structures over Graphs

e | ocal geometric structures learning
m Kernel correlation, measures geometric affinity of point sets
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Potential kernels learned
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Learning Local Geometric Structures over Graphs

e Example kernels learned and filter responses

m&l by

34



Shape Classification

e ModelNet10, ModelNet40

m Uniformly sampling from meshes

e L = 32 kernels, each kernel has K = 16 points

e Main competing method, PointNet++
m Slightly better accuracy with less number of parameters

Method MN10 MN40
MVCNN [36] - 90.1
VRN Ensemble [2] 07.1 955
ECC [34] 000  83.2
PointNet (vanilla) [29] - 87.2
PointNet [29] - 89.2
PointNet+-+ [31] - 90.7
KCNet (ours) 94.4 091.0

} Image avail as inputs
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Object Part Segmentation
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Take Home Message

* Find graph embedding via learning

* Graph topology 1: A global neighborhood graph
e Graph pooling
* Local geometry learning
* Local feature aggregation

* Graph topology 2: Local bipartite graphs
* Local geometry learning
* Local feature maps



Thanks for your attention!

Any questions?



