

3D Interlocking Assemblies: Design and Applications

Peng SONG, SUTD

3D Assemblies

Composed of multiple component parts with a specific form and functionality

Steady Assembly

Need parts joining approach to restrict parts relative movements

Parts Joining

Unsteady

Irreversible

Break parts

Tedious

Can we make a steady assembly without relying on any fasteners?

Can we make a steady assembly without relying on any fasteners? **Solution**: parts connected based on their <u>geometric arrangements</u>.

Can we make a steady assembly without relying on any fasteners? **Solution**: parts connected based on their <u>geometric arrangements</u>.

Ease of assembly

Steady

Disassemblable

Applications

Formal Definition

An assembly is interlocking if only one movable part (key), while all other parts, as well as any subset of the parts, are immobilized

Test interlocking has exponential complexity!!!

Interlocking Assembly: Design Problem

Input: target shape

Output: interlocking assembly

Interlocking Assembly: Design Problem

Input: target shape (with segmented parts)

Output: interlocking assembly

- Need to test immobilization of every single part and every subset of parts
- A subset of parts can be movable along different directions simultaneously

Challenge #2 Disassemblable

Assembly can be progressively disassembled into a set of individual parts

Input: segmented parts

Deadlocking assembly

Challenge #2 Disassemblable

Assembly can be progressively disassembled into a set of individual parts

Input: segmented parts

Deadlocking sub-assembly

Need to construct parts geometry such that every single part and every subset of parts are immobilized, except the key

Input: segmented parts

Need to construct parts geometry such that every single part and every subset of parts are immobilized, except the key

Input: segmented parts

Movable parts group

Need to construct parts geometry such that every single part and every subset of parts are immobilized, except the key

Input: segmented parts

Need to construct parts geometry such that every single part and every subset of parts are immobilized, except the key

Input: segmented parts

Interlocking Assembly

Interlocking Assembly: Related Works

Interlocking Assembly: Related Works

Interlocking Assembly: Related Works

Overview

Recursive Interlocking Puzzles

SIGGRAPH Asia 2012

DESIA: A General Framework for Designing Interlocking Assemblies SIGGRAPH Asia 2018

Overview

Recursive Interlocking Puzzles

SIGGRAPH Asia 2012

DESIA: A General Framework for Designing Interlocking Assemblies SIGGRAPH Asia 2018

Interlocking Puzzles

Interlocking Puzzles

3D interlocking puzzle

Our Goal: Design Interlocking Puzzles

Input: voxelized model

Output: K interlocking parts

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

 $2^{(K-1)}$ subsets of parts

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

 $2^{(K-1)}$ subsets of parts

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

 $2^{(K-1)}$ subsets of parts
An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

An assembly is interlocking if <u>only one movable part (key)</u>, while all other parts, as well as any subset of parts, are immobilized

Challenge : Test interlocking for puzzle with K > 20 parts is too computational expensive; Yet, we want to design interlocking puzzles with K as large as possible (e.g., K = 100)

Key Idea #1: Formal Model

Skip the exponential time complexity of testing global interlocking!!!

Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that 1. $[P_{i-1}, P_i, R_i]$ is interlocking

[P₁, P₂, R₂]

 $[P_1, P_2, P_3, R_3]$

Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that 1. $[P_{i-1}, P_i, R_i]$ is interlocking

Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that 1. $[P_{i-1}, P_i, R_i]$ is interlocking 2. P_i is disassemblable in $[P_i, R_i]$

Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that 1. $[P_{i-1}, P_i, R_i]$ is interlocking 2. P_i is disassemblable in $[P_i, R_i]$

- Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that
- 1. [P_{i-1}, P_i, R_i] is interlocking
- 2. P_i is disassemblable in $[P_i, R_i]$
- 3. P_i is connected; R_i is connected

- Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that
- 1. [P_{i-1}, P_i, R_i] is interlocking
- 2. P_i is disassemblable in $[P_i, R_i]$
- 3. P_i is connected; R_i is connected

- Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that
- 1. [P_{i-1}, P_i, R_i] is interlocking
- 2. P_i is disassemblable in $[P_i, R_i]$
- 3. P_i is connected; R_i is connected

- Given $[P_1, ..., P_{i-1}, R_{i-1}]$, partition P_{i-1} (i>1) into P_i and R_i such that
- 1. [P_{i-1}, P_i, R_i] is interlocking
- 2. P_i is disassemblable in [P_i, R_i]
- 3. P_i is connected; R_i is connected

Key Idea #3: Constructive Approach

Construct the key piece P_1 (movable only along +x)

Key Idea #3: Constructive Approach

Construct the 2nd piece P₂ (immobilized by the key)

Summary of the project

- A **formal model** to directly guarantee recursive interlocking based on building local interlocking groups (LIGs)
- **Requirements** to ensure local interlocking of intermediate assemblies when extracting each puzzle piece
- A constructive approach to iteratively generate geometry of each puzzle piece

Follow-up Work: Interlocking Objects for 3D Printing

Song et al. Printing 3D Objects with Interlocking Parts. CAGD (Proc. of GMP), 2015

Follow-up Work: Interlocking Objects for 3D Printing

Song et al. Printing 3D Objects with Interlocking Parts. CAGD (Proc. of GMP), 2015

Overview

Recursive Interlocking Puzzles SIGGRAPH Asia 2012

DESIA: A General Framework for Designing Interlocking Assemblies SIGGRAPH Asia 2018

Our Goal: Design Interlocking Assembly

Can we have a <u>general framework</u> to design interlocking assemblies that can <u>explore the full search space</u> of all possible interlocking configurations?

- 1. Provide more design flexibility
- 2. Useful for designing new interlocking assemblies

Our Key Idea: Graph-based Representation

Contribution #1: Test Interlocking

Given an assembly **A** and a certain axial direction d

Create a directed edge from P_i to P_j iff P_j blocks P_i from translating along d

Create a directional blocking graph for d = +x

Create a directional blocking graph for d = +y

The two graphs are called base directional blocking graphs of the assembly

An assembly is interlocking if all base directional blocking graphs are strongly connected except the key.

Contribution #2: Design Interlocking

 P_2

 P_3

+y

P 51

+χ

 P_4

Design Interlocking: Tree-traversal Search

Search space is explored in a tree traversal process with automatic backtracking

9-part Interlocking Cube

14-part Interlocking Dog

14-part Interlocking Dog

Results: Interlocking Frame Structures

Results: Fabrication

Our designed Frame Chair

Summary of the project

- Make a connection between interlocking assemblies and a family of directional blocking graphs
- A graph-based method to test interlocking efficiently
- A graph-based method to **design** interlocking assemblies
 - graph design + geometry realization

Outlook: Computational Design of Complex Assemblies

- Parts fabrication
- Parts joining
- Parts assembly
- Parts packing
- Structural Stability
- Reconfigurability
- Functionality

Thank You!

More information can be found at <u>https://sutd-cgl.github.io/</u>

