
3D Interlocking Assemblies:
Design and Applications

Peng SONG, SUTD

3D Assemblies

Composed of multiple component parts with a specific form and functionality

Steady Assembly

Need parts joining approach to restrict parts relative movements

Parts Joining

Unsteady Irreversible Break parts Tedious

Interlocking Assembly

Can we make a steady assembly without relying on any fasteners?

Interlocking Assembly

Can we make a steady assembly without relying on any fasteners?
Solution: parts connected based on their geometric arrangements.

Interlocking Assembly

Can we make a steady assembly without relying on any fasteners?
Solution: parts connected based on their geometric arrangements.

Intriguing Properties

Steady DisassemblableEase of assembly

Applications

Formal Definition

DeadlockingNon-interlocking Interlocking

An assembly is interlocking if only one movable part (key), while all
other parts, as well as any subset of the parts, are immobilized

Test interlocking has exponential complexity!!!

Interlocking Assembly: Design Problem

Input: target shape Output: interlocking assembly

Input: target shape
(with segmented parts) Output: interlocking assembly

Interlocking Assembly: Design Problem

• Need to test immobilization of every single part and every subset of parts

Challenge #1 Test Interlocking

• Need to test immobilization of every single part and every subset of parts

Challenge #1 Test Interlocking

• Need to test immobilization of every single part and every subset of parts

Challenge #1 Test Interlocking

• Need to test immobilization of every single part and every subset of parts

Challenge #1 Test Interlocking

• Need to test immobilization of every single part and every subset of parts

Challenge #1 Test Interlocking

• Need to test immobilization of every single part and every subset of parts
• A subset of parts can be movable along different directions simultaneously

Single-direction movement Single-direction movement Multi-direction movement

Challenge #1 Test Interlocking

Assembly can be progressively disassembled into a set of individual parts

Deadlocking assemblyInput: segmented parts

Challenge #2 Disassemblable

Deadlocking sub-assemblyInput: segmented parts

Challenge #2 Disassemblable

Assembly can be progressively disassembled into a set of individual parts

Need to construct parts geometry such that every single part and every
subset of parts are immobilized, except the key

Input: segmented parts

Challenge #3 Parts Immobilization

Input: segmented parts Movable parts group

Challenge #3 Parts Immobilization

Need to construct parts geometry such that every single part and every
subset of parts are immobilized, except the key

Input: segmented parts

Challenge #3 Parts Immobilization

Need to construct parts geometry such that every single part and every
subset of parts are immobilized, except the key

Input: segmented parts Interlocking Assembly

Challenge #3 Parts Immobilization

Need to construct parts geometry such that every single part and every
subset of parts are immobilized, except the key

Interlocking Assembly: Related Works

1978 20122011ancient 2015 2016 2017 2018

Interlocking Assembly: Related Works

1978 20122011ancient 2015 2016 2017 2018

Interlocking Assembly: Related Works

1978 20122011ancient 2015 2016 2017 2018

Overview

Recursive Interlocking Puzzles
SIGGRAPH Asia 2012

DESIA: A General Framework for
Designing Interlocking Assemblies
SIGGRAPH Asia 2018

Overview

Recursive Interlocking Puzzles
SIGGRAPH Asia 2012

DESIA: A General Framework for
Designing Interlocking Assemblies
SIGGRAPH Asia 2018

Interlocking Puzzles

2D puzzle 3D puzzle 3D interlocking puzzle

Interlocking Puzzles

3D interlocking puzzle

Our Goal: Design Interlocking Puzzles

Input: voxelized model Output: K interlocking parts

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

C(K, 1)

C(K, 2)

C(K, 𝐾/2)

+

+

…
= 2("#$)

subsets of parts
K = 5 ..

Test Interlocking: Parts Immobilization

K = 5 ..

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

Test immobilization: P1

(movable along –x, +x, -y, +y?)

P1

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

P1: not movable along -x

P1

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

P1

P1: not movable along +x

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

P1

P1: not movable along -y

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

P1

P1: movable along +y

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

P2
P1

P1P2 : not movable along -x

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

+x

+y

P1

P1P2 : not movable along +x

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

P2

+x

+y

P1

P1P2 : not movable along -y

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

P2

+x

+y

P1

P1P2 : not movable along +y

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

2("#$) subsets of parts

P2

Test mobility of 4 axial directions

2("#$) subsets of parts
+x

+y

P1

P1P2 : immobilized

Test mobility of 4 axial directions×Total cost =

..

Test Interlocking: Parts Immobilization

An assembly is interlocking if only one movable part (key), while all other
parts, as well as any subset of parts, are immobilized

P2

Challenge : Test interlocking for puzzle with K > 20 parts is too computational expensive;
Yet, we want to design interlocking puzzles with K as large as possible (e.g., K = 100)

The complexity of testing interlocking is exponential in K

K = 30K = 10 K = 20 K = 40

Test Interlocking: Parts Immobilization

Key Idea #1: Formal Model

P1 P2 P4 P5 P6 R9P7 P9P8P3

Global Interlocking

R9P9P8

R2P1 P2

P2 R3P3

R4P4P3

R5P4 P5

R6P5 P6

R7P6 P7

P8P7 P8

R1P1

S

Local interlocking groups

Skip the exponential time complexity of testing global interlocking!!!

R2 R3

P1

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking

P1 P2

[P1, P2, R2]

P2

P3

[P1, P2, P3, R3]

P1

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking

[P1, P2, R2]

P2

P3

[P1, P2, P3, R3]

R2

P1 P2

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking
2. Pi is disassemblable in [Pi, Ri]

[P1, P2, R2] [P1, P2, P3, R3]

P2

P3

R2

P1 P2

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking
2. Pi is disassemblable in [Pi, Ri]

[P1, P2, R2] [P1, P2, P3, R3]

P3

R2

P1 P2

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking
2. Pi is disassemblable in [Pi, Ri]
3. Pi is connected; Ri is connected

[P1, P2, R2] [P1, P2, P3, R3]

P2P1

P3

R2

P1 P2

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking
2. Pi is disassemblable in [Pi, Ri]
3. Pi is connected; Ri is connected

[P1, P2, R2] [P1, P2, P3, R3]

P3

R2

P1 P2

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking
2. Pi is disassemblable in [Pi, Ri]
3. Pi is connected; Ri is connected

[P1, P2, R2] [P1, P2, P3, R3]

R2

P1 P2

Key Idea #2: Partition Requirements

R3

Given [P1, …, Pi-1, Ri-1], partition Pi-1 (i>1) into Pi and Ri such that
1. [Pi-1, Pi, Ri] is interlocking
2. Pi is disassemblable in [Pi, Ri]
3. Pi is connected; Ri is connected

[P1, P2, R2] [P1, P2, P3, R3]

P2P1

P3R2

P1 P2

Key Idea #2: Partition Requirements

Seed Voxel

xz

y Blocking & Blockee
Voxel Pair Selected Path

Blocking & Blockee
Voxel Pair

Construct the key piece P1 (movable only along +x)

Key Idea #3: Constructive Approach

Construct the 2nd piece P2 (immobilized by the key)

x

z

y
Seed Voxel

Blocking & Blockee
Voxel Pair Selected Path

Blocking & Blockee
Voxel Pair

Key Idea #3: Constructive Approach

Our Result

Our Result

Our Result

Our Result

Summary of the project

• A formal model to directly guarantee recursive interlocking based on
building local interlocking groups (LIGs)

• Requirements to ensure local interlocking of intermediate assemblies
when extracting each puzzle piece

• A constructive approach to iteratively generate geometry of each puzzle
piece

Song et al. Printing 3D Objects with Interlocking Parts. CAGD (Proc. of GMP), 2015

Follow-up Work: Interlocking Objects for 3D Printing

Follow-up Work: Interlocking Objects for 3D Printing

Song et al. Printing 3D Objects with Interlocking Parts. CAGD (Proc. of GMP), 2015

Overview

Recursive Interlocking Puzzles
SIGGRAPH Asia 2012

DESIA: A General Framework for
Designing Interlocking Assemblies
SIGGRAPH Asia 2018

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

Full design space

The Recursive Interlocking approach can explore only a limited design space

LIG design
space

Motivation

Can we have a general framework to design interlocking assemblies that can
explore the full search space of all possible interlocking configurations?

…

1. Provide more design flexibility
2. Useful for designing new interlocking assemblies

Our Goal: Design Interlocking Assembly

Our Key Idea: Graph-based Representation

Test and design
interlocking assemblies

Directional blocking graphs
Invented by Wilson [1992]

G(+x, A) G(+y, A)
+x

+y

A

Contribution #1: Test Interlocking

All graphs are strongly connected
(except the key part)The 3D assembly is interlocking

Polynomial time complexity!!!

G(+x, A) G(+y, A)
+x

+y

A

+x

+y

Test Interlocking: Directional Blocking Graph

Given an assembly A and a certain axial direction d

+x

+y

Test Interlocking: Directional Blocking Graph

Create a directed edge from Pi to Pj iff Pj blocks Pi from translating along d

+x

+y

Test Interlocking: Directional Blocking Graph

+x

+y

Test Interlocking: Directional Blocking Graph

+x

+y

Test Interlocking: Directional Blocking Graph

+x

+y

Test Interlocking: Directional Blocking Graph

+x

+y

Test Interlocking: Directional Blocking Graph

G(+x, A)+x

+y

Test Interlocking: Directional Blocking Graph

Create a directional blocking graph for d = +x

A

G(+x, A)+x

+y

G(+y, A)

Test Interlocking: Directional Blocking Graph

Create a directional blocking graph for d = +y

A

G(+x, A)+x

+y

G(+y, A)

Test Interlocking: Directional Blocking Graph

The two graphs are called base directional blocking graphs of the assembly

G(+x, A)+x

+y

G(+y, A)

Test Interlocking: Directional Blocking Graph

An assembly is interlocking if all base directional blocking graphs are
strongly connected except the key.

The complexity of this testing approach is polynomial since finding all
strongly connected components can be done in O(n2)

Contribution #2: Design Interlocking

Make all graphs strongly connectedConstruct interlocking parts geometry

G(+x, A) G(+y, A)
+x

+y

A

Design Interlocking: Iterative Construction

R0 R R

G(+x, A0) G(+y, A0)
+x

+y

Geometry Space Graph Space

Design Interlocking: Iterative Construction

1

R R

1

G(+x, A1) G(+y, A1)
+x

+y

Split nodes

R0

Design Interlocking: Iterative Construction

1

R R

1

G(+x, A1) G(+y, A1)
+x

+y

Graph Design
(make graphs strongly connected except the key)

R0

Design Interlocking: Iterative Construction

P1

R1

1

R R

1

G(+x, A1) G(+y, A1)
+x

+y

Graph Design
(make graphs strongly connected except the key)

Geometry Realization
(realize blocking relations in the graphs)

Design Interlocking: Iterative Construction

P1

R1

1

R R

1

G(+x, A1) G(+y, A1)
+x

+y

Graph Design Geometry Realization

Design Interlocking: Iterative Construction

1

2 R

1

G(+x, A2) G(+y, A2)

2 R

+x

+y

Graph Design Geometry Realization

P1

R1

Design Interlocking: Iterative Construction

G(+x, A2) G(+y, A2)

Graph Design Geometry Realization

1

2 R

1

2 R

+x

+y

P1

R1

Design Interlocking: Iterative Construction

P1

P2

R2

G(+x, A2) G(+y, A2)
+x

+y

Graph Design Geometry Realization

1

2 R

1

2 R

Design Interlocking: Iterative Construction

P1

P2

P3 R3

1

2 3

R

2 3

R

1

G(+x, A3) G(+y, A3)
+x

+y

Graph Design Geometry Realization

Design Interlocking: Iterative Construction

P5

P1

P2

P3

P4

1

2 3

4 5

1

2 3

4 5

G(+x, A4) G(+y, A4)
+x

+y

Graph Design Geometry Realization

Design Interlocking: Tree-traversal Search

Search space is explored in a tree traversal process with automatic backtracking

Results: Interlocking Voxelized Structures

G(+x, A) G(+y, A) G(+z, A)

1
2

4 5

6 7

98

3
1

2

4 5

6 7

3

98

1
2

4 5

6

8

7

3

9

+x

+y

+z

9-part Interlocking Cube

Results: Interlocking Voxelized Structures

14-part Interlocking Dog

G(+x, A) G(+y, A) G(+z, A)

+x

+y

+z

Results: Interlocking Voxelized Structures

+x

+y

+z

14-part Interlocking Dog

Results: Interlocking Voxelized Structures

Input model

1300-part Interlocking Cube

Results: Interlocking Frame Structures

Voxel joints

Results: Fabrication

Our designed Frame Chair

Summary of the project

• Make a connection between interlocking assemblies and a family of directional
blocking graphs

• A graph-based method to test interlocking efficiently
• A graph-based method to design interlocking assemblies

- graph design + geometry realization

G(+x, A) G(+y, A)
+x

+y

A

• Parts fabrication
• Parts joining
• Parts assembly
• Parts packing
• Structural Stability
• Reconfigurability
• Functionality

Outlook: Computational Design of Complex Assemblies

More information can be found at
https://sutd-cgl.github.io/

Thank You!

https://sutd-cgl.github.io/

