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3D shape representations

(¢) O-CNN [2] (d) Adaptive O-CNN [3]
(octree-based voxel) (octree-based patch)

(e) Point cloud [4] (f) AtlasNet [5] (g) AtlasNet [5] (h) Ours (IM-NET) [6]
(25 square patches) (1 sphere patch) (implicit field) 2



How implicit field works?

Input. | Output:
point coordinates = (5,4) value = 1



How implicit field works?

Input: | Output:
point coordinates = (7,4) value = 0



How implicit field works?

Input. | Output:
point coordinates = (5.6,3.3) value = 0



Network - implicit field decoder

* As a whole: Input shape feature code, output a field function.
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Toy 2D experiments
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Toy 2D experiments

AE trained with CNN decoder: AE trained with implicit decoder:
VAE trained with CNN decoder: VAE trained with implicit decoder:
WGAN trained with CNN decoder: WGAN trained with implicit decoder:
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3D shape autoencoder (IM-AE) results

(a) Ground truth

(d)IM-AE256




IM-GAN results

* Based on trained models of IM-AE, we train GANs on the latent
codes, namely, latent GANSs.

(2) 3DGAN (d) CNN-GAN
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IM-GAN Interpolation
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IM-SVR for single view image reconstruction
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(a) Input image (b) HSP (c) AtlasNet25 (d) AtlasNetO  (e) IM-SVR  (e) Ground Truth 1 3



IM-NET with a single output
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IM-NET with branched outputs
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BAE-NET:

Branched Autoencoder for
Shape Co-Segmentation

Training: reconstruction loss
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Unsupervised shape co-segmentation




Weakly-supervised shape co-segmentation

(a) Armrest  (b) Back (c) Engine
(chair) (chair) (airplane)




One-shot training

* Give the network a few
segmented shapes.

* Supervised loss on those
shapes and reconstruction
loss on others.
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One-shot semantic segmentation
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One-shot semantic segmentation

l-exem. vs. | 2-exem. vs. | 3-exem. Vvs.

10% train set | 20% train set | 30% train set
Pointnet [47] 2.1 73.0 74.6
Pointnet++ [4 3] 13.5 75.4 76.6
PointCNN [30] 58.0 65.6 65.7
SSCN [13] 56.7 61.0 64.6
Our BAE-NET 76.6 77.6 78.7

Table 3. Quantitative comparison to supervised methods by aver-
age IOU over 15 shape categories, without combining parts in the
ground truth. Our one-shot learning with 1/2/3 exemplars outper-
forms supervised methods trained on 10%/20%/30% of the shapes,
respectively (on average each category has 7635 training shapes).
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Why 1s it working?
* The interpretability of our network.

* To show that, we have done toy experiment on two synthetic
datasets: "Elements” and "Triple rings”.
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Interpolations
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How to represent a cube?
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How to represent a cube?
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Represent shapes as Binary Space Partitioning tree

Inferred planes from P
4

Convexes from C . A

Connections T

Output shape §° ’
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BSP-Net: Generating Compact Meshes via Binary Space Partitioning

Zhiqin Chen Andrea Tagliasacchi Hao Zhang
Simon Fraser University Google Research Simon Fraser University
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(a) BSP-Net output (b) IM-NET output -

(392 vertices, 219 polygons or 600 triangles) (sampled at 256°, 91,542 vertices, 183,096 triangles)



Inferred planes from P

Connections T

Convexes from C

Output shape §° ’

Figure 2: An illustration of “neural” BSP-tree.
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Figure 3: The network corresponding to Figure 2.
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(a) Input

(d) Stage 2 - Discrete W/ L er1ap
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(1) Atlasnet
(1 Sphere) |

(2) Alasnct |
(25 patches)

(3) OccNet
(128%)
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(4) IM-NET
(2563)

(5) Ours

(6) Ground

truth
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Represent shapes as Binary Space Partitioning tree

Inferred planes from P

Connections T

Convexes from C . A

Output shape §”
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Thank you. Q&A
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