Learning Implicit Representations for Shape Generation and Analysis

Zhiqin Chen, Ph.D. student, Simon Fraser University

3D shape representations

(a) Mesh

(b) Voxel [1]

(c) O-CNN [2] (octree-based voxel)

(d) Adaptive O-CNN [3] (octree-based patch)

(e) Point cloud [4]

(f) AtlasNet [5] (25 square patches)

(g) AtlasNet [5] (1 sphere patch)

How implicit field works?

Input: point coordinates = (5,4)

3

Output: value = 1

How implicit field works?

Output: value = 0

How implicit field works?

Input: point coordinates = (5.6, 3.3)

Output: value = 0

Network - implicit field decoder

• As a whole: Input shape feature code, output a field function.

Toy 2D experiments

Training – AE_{CNN} on A

Training – AE_{CNN} on A_blur

Training $-AE_{IM}$ on A

Training $-AE_{IM}$ on A_blur

AE trained with CNN decoder:

VAE trained with CNN decoder:

WGAN trained with CNN decoder:

AE trained with implicit decoder:

VAE trained with implicit decoder:

В

WGAN trained with implicit decoder:

3D shape autoencoder (IM-AE) results

IM-GAN results

• Based on trained models of IM-AE, we train GANs on the latent codes, namely, latent GANs.

IM-GAN interpolation

IM-GAN interpolation

ABCDEFG HIJKLMN OPQ RST UVW XYZ

IM-SVR for single view image reconstruction

IM-NET with a single output

IM-NET with branched outputs

BAE-NET:

Branched Autoencoder for Shape Co-Segmentation

Unsupervised shape co-segmentation

Weakly-supervised shape co-segmentation

One-shot training

- Give the network a few segmented shapes.
- Supervised loss on those shapes and reconstruction loss on others.

One-shot semantic segmentation

One-shot semantic segmentation

	1-exem. vs.	2-exem. vs.	3-exem. vs.
	10% train set	20% train set	30% train set
Pointnet [42]	72.1	73.0	74.6
Pointnet++ [43]	73.5	75.4	76.6
PointCNN [30]	58.0	65.6	65.7
SSCN [13]	56.7	61.0	64.6
Our BAE-NET	76.6	77.6	78.7

Table 3. Quantitative comparison to supervised methods by average IOU over 15 shape categories, without combining parts in the ground truth. Our one-shot learning with 1/2/3 exemplars outperforms supervised methods trained on 10%/20%/30% of the shapes, respectively (on average each category has 765 training shapes).

Why is it working?

- The interpretability of our network.
- To show that, we have done toy experiment on two synthetic datasets: "Elements" and "Triple rings".

(a) Joint space of our model

Interpolations

3-layer interpolation 3-layer extrapolation

How to represent a cube?

How to represent a cube?

Represent shapes as Binary Space Partitioning tree

Inferred planes from **P**

BSP-Net: Generating Compact Meshes via Binary Space Partitioning

Zhiqin Chen Simon Fraser University Andrea Tagliasacchi Google Research

Hao Zhang Simon Fraser University

(a) BSP-Net output (392 vertices, 219 polygons or 600 triangles) (b) IM-NET output (sampled at 256³, 91,542 vertices, 183,096 triangles)

Figure 2: An illustration of "neural" BSP-tree.

(a) Input

(d) Stage 2 - Discrete w/ $\mathcal{L}^*_{overlap}$

Represent shapes as Binary Space Partitioning tree

Acknowledgements

Hao (Richard) Zhang Simon Fraser University (my supervisor) Siddhartha Chaudhuri Adobe Research, IIT Bombay

Matthew Fisher Adobe Research Andrea Tagliasacchi Google Research

Kangxue Yin Ph.D. student Simon Fraser University

Thank you. Q&A

IM-NET Learning Implicit Fields for Generative Shape Modeling (CVPR19) BAE-NET BAE-NET: Branched Autoencoder for Shape Co-Segmentation (ICCV19)

BSP-NET

BSP-Net: Generating Compact Meshes via Binary Space Partitioning (CVPR20)