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3D shape representations
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How implicit field works?

Input:
point coordinates = (5,4)

Output:
value = 1
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How implicit field works?

Input:
point coordinates = (7,4)

Output:
value = 0
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How implicit field works?

Input:
point coordinates = (5.6,3.3)

Output:
value = 0
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Network - implicit field decoder

• As a whole: Input shape feature code, output a field function.
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Toy 2D experiments
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Toy 2D experiments
AE trained with CNN decoder:                                 AE trained with implicit decoder:

VAE trained with CNN decoder:                              VAE trained with implicit decoder:

WGAN trained with CNN decoder:                         WGAN trained with implicit decoder:
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3D shape autoencoder (IM-AE) results
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IM-GAN results
• Based on trained models of IM-AE, we train GANs on the latent 

codes, namely, latent GANs.
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IM-GAN interpolation
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IM-GAN interpolation
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IM-SVR for single view image reconstruction 
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IM-NET with a single output
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IM-NET with branched outputs
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BAE-NET:
Branched Autoencoder for 
Shape Co-Segmentation
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Unsupervised shape co-segmentation
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Weakly-supervised shape co-segmentation
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One-shot training

• Give the network a few 
segmented shapes.

• Supervised loss on those 
shapes and reconstruction 
loss on others.
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One-shot semantic segmentation
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One-shot semantic segmentation
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Why is it working?

• The interpretability of our network.

• To show that, we have done toy experiment on two synthetic 
datasets: "Elements" and "Triple rings".
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Interpretability
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Hyperdimensional shape
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Interpolations
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How to represent a cube?
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How to represent a cube?

Plane 1

Plane 2

Plane 3
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Represent shapes as Binary Space Partitioning tree
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Interpretability
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Represent shapes as Binary Space Partitioning tree
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Thank you.    Q&A

IM-NET
Learning Implicit Fields for 

Generative Shape Modeling
(CVPR19)

BAE-NET
BAE-NET: Branched Autoencoder 

for Shape Co-Segmentation
(ICCV19)

BSP-NET
BSP-Net: Generating Compact Meshes 

via Binary Space Partitioning
(CVPR20)
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