Atlas Generation: Cutting, Parameterization, Packing

Xiao-Ming Fu GCL, USTC

Texture Mapping

 Texture mapping is a method for defining high frequency detail, surface texture, or color information on a computer-generated graphic or 3D model.

Atlas

• Requires defining a mapping from the model space to the texture space.

Model Space

Applications

- Signal storage
- Geometric processing

Gradient-Domain Processing within a Texture Atlas, SIGGRAPH 2018

Generation Process

- Cutting: compute seams that are as short as possible to segment an input mesh into charts
- Parameterization: parameterize the charts with as little isometric distortion as possible
- Packing: pack the parameterized charts into a rectangular domain.

Atlas Refinement

Cutting

Sphere-based Cut Construction for Planar Parameterizations, SMI 2018

Goal

- A cut construction method that satisfies
 - The distortion of a subsequent planar parameterization is low.
 - The cuts are feature-aligned, resulting in visual beauty.
 - The cuts are short.

• It is challenging to satisfy all the above requirements.

Previous Work

Method

Mapping, Parameterization & Distortion

$$\mathbf{f}_{i} \qquad \begin{array}{c} J_{i}\mathbf{x} + \mathbf{b}_{i} \\ \hline J_{i} = U \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \end{bmatrix} V^{T} \end{array} \qquad \begin{array}{c} \widehat{\mathbf{f}}_{i} \\ \end{array}$$

- Distortion metrics
 - Conformal distortion (angle preserving) [Hormann et al., 2000]

$$d_i^{\text{conf}} = \frac{1}{2} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right) = \frac{1}{2} \frac{\|J_i\|^2}{\det J_i}$$

• Areal distortion (area preserving) [Fu et al., 2015]

$$d_i^{\text{area}} = \frac{1}{2} (\det J_i + (\det J_i)^{-1})$$

• Isometric distortion (isometry preserving) [Fu et al., 2015]

$$d_i^{\text{iso}} = \alpha d_i^{\text{conf}} + (1 - \alpha) d_i^{\text{area}}$$

Key Observation

 The high isometric distortion mainly appears at the extrusive regions when a mesh is parameterized onto a constant curvature domain (such as a sphere or the plane) as conformal as possible.

Pipeline

Input a closed genus-zero triangular mesh

Step 1: parameterize to a sphere ACAP

Step 2: find feature points by hierarchical clustering Step 3: cut by a minimal spanning tree

Output an open mesh of disk topology

High-Genus Cases

• Cut along handles [Dey et al., 2013] \rightarrow Fill the holes \rightarrow Apply our algorithm

Results

Comparison with Geometry Image [Gulet al., 2002]

Comparison with Seamster [Shaffer and Hart, 2002]

Comparison with Autocuts [Poranne et al., 2017]

Conclusion

- We present a sphere-based method for constructing high-quality cuts...
 - ACAP spherical parameterization
 - Hierarchical clustering
 - Cut on the sphere
- such that the subsequent planar parameterization can have low isometric distortion.

Limitations and Discussions

- Theoretical guarantees
- Tessellations

Parameterization

Progressive Parameterizations, SIGGRAPH 2018

Maintenance-based method

Convex boundary

High distortion

• Maintenance-based method

Maintenance-based method

Parameterization

Texture mapping

- Maintenance-based method
 - Block coordinate descent methods [Fu et al. 2015; Hormann and Greiner 2000]
 - Quasi-Newton method [Smith and Schaefer 2015]
 - Preconditioning methods [Claici et al. 2017; Kovalsky et al. 2016]
 - Reweighting descent method [Rabinovich et al. 2017]
 - Composite majorization method [Shtengel et al. 2017]

•

Various solvers!

Challenge

Extremely large distortion on initializations

Reference-guided distortion metric

Symmetric Dirichlet metric: $D(f_i^r, f_i^p)$ $= \frac{1}{4} (||J_i||_F^2 + ||J_i^{-1}||_F^2)$ $= \frac{1}{4} (\sigma_i^2 + \sigma_i^{-2} + \tau_i^2 + \tau_i^{-2})$ $\sigma_i, \tau_i: \text{ singular values of } J_i$ Opt value = 1 when $\sigma_i = \tau_i = 1$

Reference M^r : A set of individual triangles

Parameterized mesh M^p

Formulation

$$\min_{M^{p}} E(M^{r}, M^{p}) = \sum_{i=1}^{N_{f}} \omega_{i} D(f_{i}^{r}, f_{i}^{p}) \quad Low \text{ distortion}$$

s.t. det $J_{i} > 0$, $i = 1, ..., N_{f}$. Foldover-free constraints

Exsiting methods choose *the triangles* f_i *of input mesh* M as reference triangles.

The energy is *numerically difficult to optimize*, leading to numerous iterations and high computational cost.

Progressive reference

If $D(f_i^r, f_i^p) \le K, \forall i$, only a few iterations in the optimization of $E(M^r, M^p)$ are necessary.

Progressive reference

• Progressively approach f_i

Progressive Parameterizations [Liu et al. 2018]

Conclusions

• Progressive parameterizations: a novel and simple method to generate low isometric distortion parameterizations with no foldovers.

- \checkmark Thinks from the view of reference triangle.
- Exhibits strong practical reliability and high efficiency.
- Demonstrates the practical robustness on a large data set containing 20712 models

Future works

- Real-time parameterizations/deformation.
- Theoretical guarantee/analysis.

Packing

Atlas Refinement with Bounded Packing Efficiency, SIGGRAPH 2019

Packing Efficiency (PE) PE-86.1% High pixel usage rate

Atlas Refinement

Input

Bijective High PE

Motivation

Packing Problems

Irregular shapes Hard to achieve high PE Rectangles Simple to achieve high PE Widely used in practice

Axis-Aligned Structure

Axis-aligned structure

Rectangle decomposition

High PE (87.6%)!

General Cases

Not axis-aligned

Axis-aligned Higher distortion

Distortion Reduction

Axis-aligned High distortion Bijective & High PE High distortion

Bijective & High PE Low distortion Bounded PE

Axis-aligned construction

Pipeline

Rectangle decomposition and packing

Distortion reduction

Axis-aligned construction

Rectangle decomposition and packing

Distortion reduction

Axis-aligned construction

Pipeline

Rectangle decomposition and packing

Distortion reduction

Experiments

PE Bound

Collection of Models

PE=80%

Comparison to [Limper et al. 2018]

Theirs

179.8s

PE=81.1%

Benchmark (5,588)

Benchmark (5,588)

Conclusion

Conclusions

- Our method provides a novel technique to refine input atlases with bounded packing efficiency.
- Key idea: converting polygon packing problems to a rectangle packing problems
 - High and **bounded** packing efficiency
 - Good performance and quality
 - Practical robustness

Limitation

- Modification of the input atlas may not meet the original intention.
- Boundary length elongation is not explicitly bounded.
- There is no theoretical guarantee, especially for the axis-aligned deformation process.

Thank you! http://staff.ustc.edu.cn/~fuxm/