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Texture Mapping

* Texture mapping is a method for defining high frequency detail,
surface texture, or color information on a computer-generated
graphic or 3D model.




Atlas

* Requires defining a mapping from the model space to the texture space.

mapping

Model Space Texture Space




Applications

* Signal storage

* Geometric processing

o § Gradient-Domain Processing
within a Texture Atlas,
SIGGRAPH 2018



Generation Process

* Cutting: compute seams that are as short as possible to segment an
input mesh into charts

* Parameterization: parameterize the charts with as little isometric
distortion as possible

* Packing: pack the parameterized charts into a rectangular domain.

mapping

Model Space Texture Space



Atlas Refinement

May not bijective



Cutting

Sphere-based Cut Construction for Planar Parameterizations, SMI 2018



Goal

* A cut construction method that satisfies
* The distortion of a subsequent planar parameterization is low.
* The cuts are feature-aligned, resulting in visual beauty.
* The cuts are short.

* It is challenging to satisfy all the above requirements.



Previous Work

Geometry Images
[Gu et al., 2002]

Seamster
[Sheffer and Hart, 2002]

Autocuts
[Poranne et al., 2017]




Method



Mapping, Parameterization & Distortion

* Distortion metrics
* Conformal distortion (angle preserving) [Hormann et al., 2000]
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* Areal distortion (area preserving) [Fu et al., 2015]
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* Isometric distortion (isometry preserving) [Fu et al., 2015]
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Key Observation

* The high isometric distortion mainly appears at the
when a mesh is parameterized onto a

(such as a sphere or the plane) as as possible.
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Pipeline

Input a closed
genus-zero
triangular mesh

Step 2: find Step 3: cut by
feature points by a minimal
hierarchical clustering spanning tree

Output an open mesh
of disk topology

Step 1: parameterize
to a sphere ACAP




High-Genus Cases

e Cut along handles [peyetal., 2013] = Fill the holes — Apply our algorithm




Results
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Comparison with Geometry Image (suetal, 2002]
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Comparison with Seamster (shaffer and Hart, 2002)
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Comparison with Autocuts (poranne etal, 2017
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Conclusion

* We present a sphere-based method for constructing high-quality
cuts...
* ACAP spherical parameterization
* Hierarchical clustering
e Cut on the sphere

 such that the subsequent planar
parameterization can have low
isometric distortion.




Limitations and Discussions

* Theoretical guarantees
e Tessellations Isotropic
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Parameterization

Progressive Parameterizations, SIGGRAPH 2018



Foldover-free parameterizations

e Maintenance-based method

Convex boundary

High distortion

Low



Foldover-free parameterizations

e Maintenance-based method
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* Maintenance-




Foldover-free parameterizations

* Maintenance-based method
* Block coordinate descent methods [Fu et al. 2015; Hormann and Greiner 2000]
Quasi-Newton method [Smith and Schaefer 2015]
Preconditioning methods [Claici et al. 2017; Kovalsky et al. 2016]
Reweighting descent method [Rabinovich et al. 2017]
Composite majorization method [Shtengel et al. 2017]



Challenge

Extremely large distortion on initializations

log(energy)




Reference-guided distortion metric

Reference M": A set of
individual triangles

Parameterized mesh MP



Formulation

N¢
min EM7,MP) = > w;(f7, £7) | e
= Foldoverfree constraints

the triangles f; of input mesh M

s.t. det]; >0, i =1,..,N¢.

numerically difficult to optimize



Progressive reference




Progressive reference

* Progressively approach f;




Progressive Parameterizations [Liu et al. 2018]

Input: a 3D
triangular mesh
+ initialization

Construct new Update Final Output 2D
references Parameterization Optimization parameterization




2x playback

[Rabinovich et al. 17] Ou rS

SLIM

CM [Shtengel et al. 17]

AKVF [Claici et al. 17]
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AKVF SLIM
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Conclusions

* Progressive parameterizations: a novel and simple method to
generate low isometric distortion parameterizations with no foldovers.

v'Thinks from the view of reference triangle.
v Exhibits strong practical reliability and high efficiency.

v'Demonstrates the practical robustness on a large data set containing
20712 models



Future works

* Real-time parameterizations/deformation.

* Theoretical guarantee/analysis.



Packing

Atlas Refinement with Bounded Packing Efficiency, SSGGRAPH 2019



Packing Efficiency (PE) «g

6.1%
MRpixel usage rate




Atlas Refinement

Bijective







Packing Problems

Irregular shapes Rectangles
Hard to achieve high PE Simple to achieve high PE
Widely used in practice
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Axis-Aligned Structure
R ,-H
T

Axis-aligned structure Rectangle decomposition High PE (87.6%)!




General Cases

m—)

Not axis-aligned Axis-aligned
Higher distortion



Distortion Reduction
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Axis-aligned Bijective & High PE Bijective & High PE

High distortion High distortion Low distortion
Bounded PE









Candidate pool




Candidate pool
E-E - B =
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Choose the one with the highest score
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PE Bound




PE=80%




Comparison to [Limper et al. 2018]

npu

PE=81. 1%l A WAH PE=88.9%
179.8s__ [l P 1.69s

e




Benchmark (5,588)




Benchmark (5,588)







Conclusions

* Our method provides a novel technique to refine input atlases with
bounded packing efficiency.

* Key idea: converting polygon packing problems to a

* High and packing efficiency
* Good and
* Practical



Limitation

* Modification of the input atlas may not meet the original intention.
* Boundary length elongation is not explicitly bounded.

* There is no theoretical guarantee, especially for the axis-aligned
deformation process.



Thank you!


http://staff.ustc.edu.cn/~fuxm/

