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My Background

« 2005 -2010: PhD from Stanford University (advisor
Leonidas Guibas).

« 2011: engineer at Google Inc.
« Since 2012 Professor in the Computer Science Department at

Ecole Polytechnique in France.
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University

 Ecole Polytechnique: located very near Paris.

« Ranked 2" best small university in the world in 2019.

 Est. 1794. Students and professors such as Ampere, Cauchy,
Fourier, Hermite, Lagrange, Monge, Poincaré, Poisson...

* Very international campus.
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Our group

e Currently 5 PhD students and 2 PostDocs.

« Part of the larger STREAM team dedicated to visual
computing with 3 other professors.

* Many international collaborations: Stanford, MIT,
UCL, KAUST, Univ. Toronto, Univ. Rome, etc.

* Funding for PhD students and postdocs !




General Overview

Overall Objective:
Create tools for computing and analyzing mappings
between geometric objects.




Talk Overview

[Related] Course Website:

http://www.lix.polytechnique. fr/~maks/fmaps SIG1l7 course/
or http://bit.do/fmaps2017

Course Notes: :

Linked from the website. Or use http://bit.do/fmaps2017 notes
Attention: (significantly) more material than in the lectures

Sample Code:
See Sample Code link on the website.

Demo code for basic operations.


http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/
http://bit.do/fmaps2017
http://bit.do/fmaps2017_notes

Talk Overview

Motivation and Problem Taxonomy
Rigid Matching: ICP
Functional Map representation, properties

Basic pipeline for non-rigid matching

Recent extensions, improvements

Open problems, Q&A



What is a Shape?

¢, Continuous: a surface embedded in 3D.

-, Discrete: a graph embedded in 3D (triangle mesh).
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Common assumptions:

 Connected.
 Manifold.
« Without Boundary.




What is a Shape?

¢, Continuous: a surface embedded in 3D.

¢, Discrete: a graph embedded in 3D (triangle mesh).

5k — 200k triangles

Shapes from the FAUST, SCAPE, and TOSCA datasets



Overall Goal

¢, Given two shapes, find correspondences between them.




Overall Goal

©» Given two shapes, find correspondences between them.

©, Finding the best map between a pair of shapes.



Problem Taxonomy

Local vs. Global
Rigid vs. Deformable
Semi vs. Fully Automatic

Learning-Based vs. Direct



Problem Taxonomy

Local vs.|Global
Rigid vs.|Deformable

Semi vs.|Fully Automatic
Learning-Based vs. Direct



Why Shape Matching?

Given a correspondence, we can transfer:

texture and
parametrization

_:>
segmentation and labels
—
deformation
——

Sumner et al. ‘04.

Other applications: shape interpolation, reconstruction ...
14



Rigid Shape Matching

* Given a pair of shapes, find the optimal Rigid
Alignment between them.

* The unknowns are the rotation/translation
parameters of the source onto the target shape.



Iterative Closest Point (ICP)

* Classical approach: iterate between finding
correspondences and finding the transtormation:

Besl, McKay (1992). "A Method
for Registration of 3-D Shapes".

example in 2D

|l
M|/
Given a pair of shapes, M and N, iterate:

1. For each x; € M find nearest neighbor v; € N.

2. Find optimal transformation R, ¢ minimizing:

argRr?in Z |Rx; +t — vi||3
! i



Iterative Closest Point

* Classical approach: iterate between finding
correspondences and finding the transtormation:

Ml / u \;\\v-/ N

Given a pair of shapes, M and N iterate:
1. For each x; € M find nearest neighbor ; € N.

2. Find optimal transformation R.,{ minimizing:

argRr?in Z |Rx; +t — yill3
! i



Iterative Closest Point

* Classical approach: iterate between finding
correspondences and finding the transtormation:

M {' / X/ N

Given a pair of shapes, M and N, iterate:
1. For each x; € M find nearest neighbor v; € N.

2. Find optimal transformation R, ¢ minimizing:

arg]%r?in Z |Rx; +t — yill3
! i



Iterative Closest Point

* Classical approach: iterate between finding
correspondences and finding the transtormation:
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Given a pair of shapes, M and N, iterate:
1. For each x; € M find nearest neighbor v; € N.
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Iterative Closest Point

* Classical approach: iterate between finding
correspondences and finding the transtormation:

f

Given a pair of shapes, M and N, iterate:
1. For each x; € M find nearest neighbor v; € N.

2. Find optimal transformation R, ¢ minimizing:

arg]%r?in Z |Rx; +t — yill3
! i



Iterative Closest Point

* Classical approach: iterate between finding
correspondences and finding the transtormation:

M

1. Finding nearest neighbors: can be done with space-
partitioning data structures (e.g., KD-tree).

2. Finding the optimal transformation R, ¢ minimizing:
arg min Rx; +t — ;|2
gmin 3| il

Can be done efficiently via SVD decomposition.



Non-Rigid Shape Matching

Unlike rigid matching with rotation/translation, there is no
compact representation to optimize for in non-rigid matching.
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Non-Rigid Shape Matching
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Main Questions:

© What does it mean for a correspondence to be “good”?
© How to compute it efficiently in practice?
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Isometric Shape Matching

Deformation Model:
Good maps must preserve geodesic distances.

Geodesic: length of shortest path lying entirely on the surface.

24



Isometric Shape Matching

Approach:

Find the point mapping by minimizing the distance distortion:

Topy = argmin » _ |d™(z,y) — dN(T(z), T(y))]

T L,y
The unknowns are point correspondences.



Isometric Shape Matching

Approach:

Find the point mapping by minimizing the distance distortion:

Toptzal‘ngﬂinZHdM(x,y) dN (T (x), T(y))|
Problem: Y

The space of possible solutions is highly non-linear, non-convex.



Functional Map Representation

We would like to define a representation of shape maps
that is more amenable to direct optimization.

A compact representation for “natural” maps.
Inherently global and multi-scale.
Handles uncertainty and ambiguity gracefully.

Allows efficient manipulations (averaging, composition).

SAR R

Leads to simple (linear) optimization problems.



Functional Approach to Mappings

Given two shapes and a pointwise map T : N — M

T ’ N
M

/’,'

The map T induces a functional correspondence:
Tr(f) =g, where g = foT

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012



Functional Approach to Mappings

Given two shapes and a pointwise map T : N — M
Tr(f)=9g:N =R

The map T induces a functional correspondence:
Tr(f) =g, where g = foT

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012
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Functional Approach to Mappings

Given two shapes and a pointwise map T : N — M
Tr(f)=9g:N =R

The map T induces a functional correspondence:
Tr(f) =g, where g = foT

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012
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Functional Approach to Mappings

Given two shapes and a pointwise map T : N — M
Tr(f)=9g:N =R

The induced functional correspondence is linear:

Tr(onfi + aafz) = a1Tr(f1) + Tr(f2)

31



Functional Map Representation

Given two shapes and a pointwise map T : N — M
Tp(f)=g:N =R

The induced functional correspondence is complete.

32



Observation

Assume that both: f € £5(M), g € Lo(N)
g:N—R

Express both f and T (f) in terms of basis functions:
F=Y aip” g="Tr(f) =) bjo}
i J

Since T is linear, there is a linear transformation from {a; } to {b, }.



Functional Map Representation

Choice of Basis:

Eigenfunctions of the Laplace-Beltrami operator:

© Generalization of Fourier bases to surfaces.

© Ordered by eigenvalues and provide a natural
notion of scale.

34




Functional Map Representation

Choice of Basis:
Eigenfunctions of the Laplace-Beltrami operator:
AQ; = A\i;
© Generalization of Fourier bases to surfaces. Form

an orthonormal basis for L?(M).

@ Ordered by eigenvalues and provide a natural
notion of scale.

o Can be computed efficiently, with a sparse matrix
eigensolver.



Observation

Express both f and T (f) in terms of basis functions:
F=>Y aipM g=Tr(f) =) big

Since T is linear, there is a linear transformation from {a; } to {b, }.



Functional Map Representation

Since the functional mapping T is linear:

Tr(arfi +oaf2) = a1Tr(f1) + aTr(f2)

T+ can be represented as a , given a choice of basis for
function spaces.

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon,
Butscher, Guibas, SIGGRAPH 2012



Functional Map Definition
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Tr = ey C o, Translates coefficients from ® ¢ to ®

Functional map:
matrix C that translates coefficients from ® ,, to P /.
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Example Maps in a Reduced Basis

Triangle meshes with pre-computed pointwise maps

e g 6
w984

. B ] | ol

(a) source (b) ground-truth map (c) left-to-right map (d) head-to-tail map

“Good” maps are close to being diagonal

Try fmap computation demo on the course website



http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/scripts/fmap_reconstruction_demo.zip

Reconstructing from LB basis

Map reconstruction error using a fixed size matrix.

wxlgs

source

reconstruction error

4.5

35

2.5

15

0.5

Catl0 Catl Ca2

Number of basis (eigen)-functions

Catd 27.9k vertices

Try

fmap reconstru
ction demo on
the course website

40


http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/scripts/fmap_reconstruction_demo.zip

Functional Map algebra

1. Map composition becomes matrix multiplication.
2. Map inversion is matrix inversion (in fact, transpose).

3. Algebraic operations on functional maps are possible.

E.g. interpolating between two maps with

C=0aC; +(1-a)C,.
|
7!5{ 'Ef » m »m

( 0 (b) 025 (c)a=05(d) a=075 (e)a=1
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Shape Matching

In practice we do not know C. Given two objects our goal
is to find the correspondence.

R

How can the functional representation help to compute the
map in practice?




Matching via Function Preservation

Suppose we don’t know C. However, we expect a pair of

functions f : M — R and g : N' — R to correspond. Then,
C must be s.t.
Ca~Db

where f =37 a;¢M, g =3, big).

R ?

Given enough {a, b} pairs, we can recover C through a
linear least squares system.




Map Constraints

Suppose we don’t know C. However, we expect a pair of
functionsf : M — R and g : N' — R to correspond. Then,
C must be s.t.

Ca~b

Function preservation constraint is general and includes:
 Attribute (e.g., color) preservation.
 Descriptor preservation (e.g. Gauss curvature).
« Landmark correspondences (e.g. distance to the point).

 Part correspondences (e.g. indicator function).



Commutativity Constraints

Regularizations:

Commutativity with other operators:

>

Sm

Note that the energy: ||C'Syy — SyCl|% is quadratic in C.



Regularization

Linking functional and point-to-point maps

The mapping is isometric, if and only if the functional
map matrix commutes with the Laplacian:

CApm = AnC

Implies that exact isometries result in diagonal functional maps.

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012



Basic Pipeline

Given a pair of shapes M, N :

1.

Compute the first k (~80-100) eigenfunctions of the Laplace-
Beltrami operator. Store them in matrices: P ¢, Pas

. Compute descriptor functions (e.g., Wave Kernel Signature)

on M, N. Express them in ® ¢, s, as columns of : A, B

. Solve Cypy = argmin |[CA — BJ|* + [|[CAxM — AxC?
C

A n, Ay : diagonal matrices of eigenvalues
of LB operator

-
Convert the functional map Cop;  # 3
to a point to point map T.




Recent Implementation

Recent implementation incorporating efficient spatial and
spectral constraints.

THAAR <
FEAAdEs

Continuous and Orientation-preserving Correspondences via Functional Maps Jing Ren,

Adrien Poulenard, Peter Wonka, Maks Ovsjanikov, SIGGRAPH Asia 2018

https://github.com/llorz/SGA18 orientation BCICP code



https://github.com/llorz/SGA18_orientation_BCICP_code

Results

A very simple method that puts together many constraints
and uses 100 basis functions gives reasonable results:

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon,
Butscher, Guibas, SIGGRAPH 2012 50



Results

A very simple method that puts together many constraints
and uses 100 basis functions gives reasonable results:
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- radius 0.025
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Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon,

Butscher, Guibas, SIGGRAPH 2012 51



Segmentation Transfer without P2P

To transfer functions we do not need to convert functional to
pointwise maps.

E.g. we can also transfer segmentations: for each segment,
transfer its indicator function, and for each point pick the
segment that gave the highest value.
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Some Recent Extensions

Unsupervised Learning

Unsupervised Deep Learning for Structured Shape Matching
Roufosse, Sharma, Ovsjanikov, ICCV, 2019 (oral).

Efficient Refinement

ZoomQut: Spectral Upsampling for Efficient Shape Correspondence
Melzi, Ren, Rodola, Sharma, Wonka, Ovsjanikov, SIGGRAPH Asia 2019



Main Question

What happens if the descriptors are bad?



FMNet

Learning approach to computing descriptors.

] D, TISl%SQ

y\  ——|Neural net| —

—| Func. Map

.. —— |Neural net| -~

O. Litany, T. Remez, E. Rodola, A. Bronstein, M. Bronstein: Deep functional maps:
Structured prediction for dense shape correspondence. In Proc. ICCV (2017). 56



FMNet

Learning approach to computing descriptors.

T 3o |
TS -

Training loss: ¢ = Y P(z,y)dy(y,n*(z)) P=|¥C® A"
(z,y)E(X.))

O. Litany, T. Remez, E. Rodola, A. Bronstein, M. Bronstein: Deep functional maps:
Structured prediction for dense shape correspondence. In Proc. ICCV (2017). 57



Our Goals

1. Avoid using ground truth correspondences
 Replace supervised loss with unsupervised one

2. Avoid using geodesic distances
 Perform all computations in the spectral domain

Main question: how to measure the quality of a map?

Note: related concurrent paper by Halimi et al. Unsupervised learning
of dense shape correspondence. In CVPR, 2019



Our approach

Replace supervised loss with unsupervised one

i,/

R

Dy

—> | FMNet

FMNet

' D
‘|
|
It’x

Unsupervised Deep Learning for Structured Shape Matching, ].-M. Rouffosse, A.

Sharma, M. O., ICCV 2019

— T(Dy)

C12 = argénin ||CAT(D1) — AT(D2)||27

Cy = argénin |ICAr(p,) — AT(D1)||2

Ereg(012a 021)




Our approach

Replace supervised loss with unsupervised one

l0SSynsupervised = Z w;E;i(Cy-2. Co-1)

IEpenalties

E1(Ch2,C51) = ||C12C21 — Id||*  Bijectivity
E1(Ch2,Cy1) = ||Co1Chg — Id||?

Ey(C) = HCT C— ] dH2 Area-preservation

E3(C) = ||A2C — CA4]|*  Near-isometry

E4(C) =) |ICXys, —Y,C|?>  Functional map close to pointwise one.

All penalties are in the reduced basis. 50x faster than FMNet



Datasets

FAUST :

» Subset: train on 80 and test on 20
» Whole set : train on 100 shapes, without ground truth
SCAPE :

» Subset: train on 50 and test on 10
» Whole set : train on 60 shapes, without ground truth

Remeshed FAUST - 5000 vertices

Datasets released as part of: Continuous and Orientation-preserving Correspondences

via Functional Maps, J. Ren, A. Poulenard, P. Wonka, M. O, SIGGRAPH Asia 2018 .



Results

Comparison to unsupervised methods

Unsupervised Methods on FAUST Remesh
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State-of-the art among unsupervised methods.

Unsupervised Deep Learning for Structured Shape Matching, J.-M. Rouffosse,
A. Sharma, M. O., ICCV 2019
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Results

Source Ground-Truth SURFMNet BCICP PMF (heat) PMF (gauss)

State-of-the art among unsupervised methods.

Unsupervised Deep Learning for Structured Shape Matching, J.-M. Rouffosse,
A. Sharma, M. O., ICCV 2019
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Results

Comparison to supervised methods

Supervised Methods on FAUST Remesh Supervised Methods on SCAPE Remesh
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Comparable results even to supervised methods

Unsupervised Deep Learning for Structured Shape Matching, J.-M. Rouffosse,
A. Sharma, M. O., ICCV 2019
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Results

Source Ground-Truth  Qurs-sub + ICP Ours-sub FMNet FMNet + PMF GCNN

Comparable results even to supervised methods

Unsupervised Deep Learning for Structured Shape Matching, J.-M. Rouffosse,

A. Sharma, M. O., ICCV 2019 s



Results

Original vs. learned descriptors.

Sowrce descriptor belore Target descnptor belore Source descriptor after Target descriptor after

Unsupervised Deep Learning for Structured Shape Matching, ]J.-M. Rouffosse,
A. Sharma, M. O., ICCV 2019
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Several related questions

1. How can we build up a functional map progressively?

2. Given a small functional map, can we use it to transfer
high frequency functions?

3. Simplify and speed-up functional map refinement?



ZoomQOut

A two-lines-of-code algorithm:

1) Given a functional map C1 of size k x k convert it to a p2p map T.
2) Convert T to C2 of size (k+1) x (k+1)

Repeat for progressively larger k

ZoomOQOut: Spectral Upsampling for Efficient Shape Correspondence, S. Melzi, J.
Ren, A. Sharma, E. Rodola, P. Wonka, M. O., SIGGRAPH Asia 2019 63



ZoomQOut

Upsampling vs. computing directly:

50 x 50

(1)

1y

‘ (1)

—

Y.

(2)

ZoomQut: Spectral Upsampling for Efficient Shape Correspondence, S. Melzi, J.

Ren, A. Sharma, E. Rodola, P. Wonka, M. O., SIGGRAPH Asia 2019



ZoomQOut — Results

Extreme case, from 2x2 to 100x100

Input: 2 X 2 ma
p o p

correspondence correspondence

Dataset provided by the Natural History Museum in Paris.
70



ZoomQOut — Results

From 5x5 to 50x50

ZoomQut: Spectral Upsampling for Efficient Shape Correspondence, S. Melzi, J.

Ren, A. Sharma, E. Rodola, P. Wonka, M. O., SIGGRAPH Asia 2019
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ZoomQOut — Results

From 20x20 to 120x120
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ZoomQOut — Results

Acdlwe
Ere =012

/M\

debdur « l) BCKCP
Err =0 Err » 0029

XY

Evaluated on:

* Intrinsic symmetry detection
« Complete matching
 Partial matching

* Function transfer

Compared against 14 baselines

Ours is 50-300x faster than
state-of-the-art with higher
accuracy
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ZoomQOut — Rationale

Consider the optimization problem:

1. - o
in E(C), where E(C)= Y -=|lcfc, - 1.|5.
glél(l,l) (C), where E(C) Zk:kll - Ck k|l

Ce®P : tunctional map arising from some pointwise map.

C; :leading principal k x k submatrix of C .

E(C) = 0 if and only if the point-to-point map is an isometry.

)

ZoomQut can be derived as a iterative method for solving this
optimization problem.

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, S. Melzi, J. Ren, A. Sharma, E.

74
Rodola, P. Wonka, M. O., SIGGRAPH Asia 2019



ZoomOQOut — Non-isometric

In some cases also works for non-isometric shapes

Initialization Ours [Ezuz et al. 2018]
(0.17sec) (355sec/570sec)
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Other Extensions

Maps in Collections

Functional map networks for analyzing and exploring large shape collections
Huang, Wang, Guibas, SIGGRAPH 2014

Promoting Pointwise Maps

Informative Descriptor Preservation via Commutativity for Shape Matching,
Nogneng, O., Eurographics 2017

Manifold Optimization

MADMM: A generic algorithm for non-smooth optimization on manifolds.
Kovnatsky, Glashoff, M. Bronstein, ECCV, 2016.



Consistency via Latent Space Optimization

¢, Application to Co-segmentation:

Cw

Image Co-Segmentation via Consistent Functional Maps
Wang, Huang, Guibas, CVPR 2013



Other Extensions

©»  Tangent Vector Field processing

An Operator Approach to Tangent Vector Field Processing Azencot, Ben-Chen,
Chazal, Ovsjanikov, SGP, 2013.

¢, Measuring Differences between shapes

Map-Based Exploration of Intrinsic Shape Differences and Variability Rustamov,
Ovsjanikov, Azencot, Ben-Chen, Chazal, Guibas, SIGGRAPH 2014

¢, Maps Between Partial shapes

Partial Functional Correspondence, Rodola, Cosmo, A. Bronstein, Torsello,
Cremers, CGF 2017




Some Open Problems

What is the optimal choice of basis?

How to guarantee a continuous pointwise map?

What are better deformation models?

Shape interpolation without converting to p2p?



Conclusions

O

O

O

O

Functional maps provide an efficient way to encode
“generalized” mappings.

Can be computed in practice with simple (least
squares) optimization.

Many different constraints can be incorporated:
pointwise maps, consistency in collections, etc.

Recent work incorporating learning of descriptors.



Thank You
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