

Hao Li

Al-Driven Human and Content Digitization

Blade Runner 2049 (2017)

Interaction With 3D Avatars

Virtual Assistants / Al Chatbots

Virtual Shopping

CAN AI-POWERED CGI CREATIONS TAKE OVER THE INFLUENCER SPACE?

Or better yet, how can human influencers keep up?

MARIA BOBILA · APR 20, 2018

Espionage

Associated Press

0	with.		0	51
12.54				
¥.		-	÷	
	-11			
my	FRITiad	ingC	auries	
0050	Test for	THE	100	
er 40an	Taragel	a hars	pe Hano	
and the				
24	1	and insure	22	
		116 2180		-0
nked				
Khyosta	ineva - 2			
m chiet	of irresult	ineg i	1	
a or Mo	den Auss	8,290		
Mattis	218			
al Const	outor at b	100.0	u of	
o Kiatua	24			
ca Ross	100			
hi. By No	ana (C80			
	100			
a Skript	a - 112 or 214 Out			
whetsbur	g. Rossia	00.05		
t puties	entre the			
10.00	2.22.MA			
ntha Pe	112 · 111			
t Design	Manager	Fran	5	
a.			~	
in Gasi	1000			
Links R	unia Una	ine at	5	
App Inc.				
Aution	a na s			
gartan T	eacher			
ia Belik	+342	-		
1.2111712	IS JC MARK	CMP		
anette	Sec.			
or/Player	ajit,Piod	anter e	ŧ.,	
tive proc Ny runni	ng si Mau	ирнуя сры, Я	Lorenza .	5
Katie b	8			
Improv	ing You	Con	fict:	
Compo	tence			
Veiwark	76,805			
Leadin	g throug	h		
Relatio	nships			
Vewors	2,022			
Progra	m Mana	geme	ente:	
Foundations				
Velening	4.634			
a).				

Digital Humans

VFX Production

Weta Digital (2014)

Epic Games / Cubic Motion / 3Lateral (2018)

Game Production

~

Digitizing Faces

High-End Capture

Full Geometry and Reflectance Inference

input image Yamaguchi et al. 2018

output textured 3D face (illumination 2)

Unconstrained Pictures

Deep Face Normalization

condition

Overview

Illumination Normalization

input

[Hu et al.]

manual

ours

Expression Normalization

input

Comparison

[Cole et al.]

ours

Deep Face Normalization

Live Demo [later!]

Pinscreen 2019

Pinscreen App

www.pinscreen.com

Facial Performances

Pinscreen 2018

Deep Learning-Based Face Synthesis

source video Nagano et al. 2018

subject A

subject C

subject B

Nagano et al. 2018

Real-time Retargeting (More Subjects)

6/13/2019 US Congress holds hearing on Deepfakes

Deep Fake: FaceSwap

Reference photo

Five-strand Dutch braid

Our result

Unstructured Data

Direct Hair Regression

Input
Volumetric Hair Representation

Orientation Field

Occupancy Field

Volumetric Hair Representation

Self Reconstruction Check

Training Data

816 portrait images [Hu et al. 2015]

USC-HairSalon dataset

Deep Learning for Hair Modeling

Saito et al. (2018)

predicted volume

input image

predicted volume

predicted volume

input image

predicted volume

predicted volume

predicted volume

interpolation result

Body/Performance Capture

Single-View Depth-Sensor Capture (CVPR 2018) Clothed+naked subjects modeling in real-time • Problem: Depth Sensor, Limited Pose, Restricted Volume

3D Photogrammetry

Sparse View Volumetric Capture

Sparse View Volumetric Capture

Sparse View Volumetric Capture

Multi-View RGB Capture (ECCV 2018)

- Clothed subjects modeling + Fast motion

• Problem: Calibrated multi-view system, no naked body estimation

Single View Prior Work

Mesh [Kanazawa et al. 18]

Voxel [Varol et al. 18]

Silhouette-based [Natsume et al. 19]

15

Single View Prior Work

ours

BodyNet [Varol et al.]

HMR [Kanazawa et al.]

Ryota Natsume*, Shunsuke Saito*, Zeng Huang, Weikai Chen, Chongyang Ma, Hao Li, Shigeo Morishima. "SiCloPe: Silhouette-Based Clothed People". CVPR 2019 (oral).

Using an Effective 3D Representation

Using an Effective 3D Representation

Inferring Texture

Key Insight: Memory Efficiency

X Limited resolution

Voxel (Explicit)

Continuous representation

Implicit Surface

Global image representation

Spatial Alignment

Local detail preserved

Fully-convolutional image representation

Pixel-Aligned Implicit Function (PIFu)

Texture Inpainting

Tex-PIFu $(\forall x, \forall z)$ – $f_{\mathcal{C}}(\mathcal{A}, \mathcal{Z}) = \mathsf{RGB}$

Multi-view Incorporation -MV-PIFu ($\forall x, \forall z$) $f(F_i(x_i), z_i) = \Phi_i \quad \bar{\Phi} = mean(\{\Phi_i\})$

Training Data

High-resolution Photogrammetry Scans [RenderPeople]

Photorealistic Rendering

Training Method

input

PIFu ($\forall x, \forall z$) $\frac{\text{Tex-PIFu} (\forall x, \forall z) - f_c(\swarrow, z) = \text{RGB}}{f_c(\swarrow, z) = \text{RGB}}$ X

Human-Digitization Pipeline

n-view inputs $(n \ge 1)$

3D occupancy field

Marching Cube

textured reconstruction

reconstructed geometry

More Results

More Results

Results (Multi-View)

#views: 6

#views: 9

Results (Video Input)

Any objects?

Rendering

3D Mesh

2D Image

3D Mesh

Gradient

2D Image

$$I^{i} = \mathcal{A}_{S}(\{C_{j}\}) = \sum_{j} w_{j}^{i} C_{j}^{i} + q$$
$$w_{j}^{i} = \frac{\mathcal{D}_{j}^{i} \exp(z_{j}^{i}/\gamma)}{\sum_{k} \mathcal{D}_{k}^{i} \exp(z_{k}^{i}/\gamma) + \exp(q)}$$

Liu et al. 2019

Shape Optimization

Deforming Car to Airplane

Target image

A 20 83 4 40 85 0 00 00 00 00 00 • * * * * *

Multi-view silhouette difference

Deformed mesh

3D Pose Estimation

Target

Initial

Difference

3D Pose Estimation

Single-View Digitization

(a) Synthetic Image

(b) Our reconstruction

(c) Real image

(d) Our reconstruction

2

Single-View Digitization

Comparisons

Input

Ground truth

SoftRas (3D unsupervised)

NMR (3D unsupervised)

Pixel2Mesh (supervised)

github.com/ShichenLiu/SoftRas

I README.md

Soft Rasterizer (SoftRas)

This repository contains the code (in PyTorch) for "Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning" (ICCV'2019 Oral) by Shichen Liu, Tianye Li, Weikai Chen and Hao Li.

Contents

- **1. Introduction**
- 2. Usage
- 3. Applications
- 4. Contacts

Introduction

Soft Rasterizer (SoftRas) is a truly differentiable renderer framework with a novel formulation that views rendering as a **differentiable aggregating process** that fuses **probabilistic contributions** of all mesh triangles with respect to the rendered pixels. Thanks to such "*soft*" formulation, our framework is able to (1) directly render colorized mesh using differentiable functions and (2) back-propagate efficient supervision signals to mesh vertices and their attributes (color, normal, etc.) from various forms of image representations, including silhouette, shading and color images.

Arbitrary Topologies?

Learning Implicit Functions via 2D Supervision

Differentiable Rendering (Tables)

Input Image

Reconstruction

Liu et al. 2019

Input Image

Reconstruction

Differentiable Rendering (Chairs)

Input Image

Reconstruction

Liu et al. 2019

Input Image

Reconstruction

Differentiable Rendering (Airplanes)

Input image

Liu et al. 2019

DPC (Point clouds)

Ours

Al-Driven Graphics

Generate

	Q
--	---

Disinformation & Privacy Concerns are Real

EDITOR'S PICK | 804,508 views | Jul 17, 2019, 07:20am

FaceApp: Is The Russian Face-Agi App A Danger To Your Privacy?

Thomas Brewster Forbes Staff

Cybersecurity I cover crime, privacy and security in digital and physical forms.

FaceApp - Al Face Editor FaceApp Inc

#1 in Photo & Video ***** 4.8, 435.6K Ratings

Free - Offers In-App Purchases

iPhone Screenshots

FaceApp is a massively popular face-altering app for Android and iOS, but there are privacy concerns a tech. FORBES

Another convincing deepfake app goes vira prompting immediate privacy backlash

Insert your face into TV shows or movies with just a single photograph

By Jon Porter | @JonPorty | Sep 2, 2019, 6:32am EDT

Image: @AllanXia

Virtualization / Personalization

From Virtual to Physical

Thanks

