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• 3D Face/Body 
Reconstruction

• 3D Human Pose Estimation
• Scene Reconstruction
• Optical Flow/Depth
• Video Segmentation
• Motion Capture
• Character Rigging/ 

Animation
• Real-time Rendering
• AR/VR
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SelFlow: Self-Supervised Learning 
of Optical Flow

Pengpeng Liu, Michael Lyu, Irwin King, Jia Xu
CVPR 2019 (Oral Presentation)
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Optical flow describes the pixel motion between two
adjacent images. The motion field is the projection of 3D
scene motion into the image.

p(t)
p(t+dt)

P(t)
P(t+dt)V

v

Images

Optical
Flow

3



Optical flow has a wide range of applications.

Object TrackingAutonomous Driving

Video Action Recognition

3D Shape Reconstruction

5



CNNs for Optical Flow
Ø Advantage: high performance while run at real time.
Ø Disadvantage: need a large amount of labeled data è difficult to obtain.

FlowNet PWC-Net

Fischer et al. 2015, "FlowNet: Learning Optical Flow 
with Convolutional Networks"

Sun et al. 2018, "PWC-Net: CNNs for Optical Flow Using 
Pyramid, Warping, and Cost Volume"
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CNNs for Optical Flow
Ø Advantage: high performance while running at real time.
Ø Disadvantage: need a large amount of labeled data è difficult to obtain.

n Pre-train on synthetic datasets à domain gap.
Ø Unsupervised Learning: produce reliable flow for non-occluded pixels, but 

lack the ability to learn the flow of occluded pixels à performance gap.

Meister et al. 2018, “UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss"
7



Our Approach

ØWe present a self-supervised learning approach to learning
optical flow from unlabeled data. Our method distills reliable
flow estimations from non-occluded pixels, and uses these
predictions to learn optical flow for hallucinated occlusions.

ØAfter fine-tuning with the pre-trained self-supervised model,
we achieve state-of-the-art supervised learning results,
reducing the reliance of synthetic data.
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Main Idea
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Initially, !" and !# are non-occluded from $% to $%&", !"' and 
!#' are their corresponding pixels. NOC-Model can accurately 

estimate the flow of !" and !# using photometric loss.  
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We inject random noise to !"#$and let noise cover %$&and %'& , 
then %$ and %' become occluded from !" to (!"#$. OCC-Model 

cannot accurately estimate flow of %$ and %' using 
photometric loss.
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We distill reliable flow estimations of !" and !# from NOC-
Model to guide the flow learning for OCC-Model.  The 

guidance is only employed to pixels that are occluded from $%
to &$%'" but non-occluded from $% to $%'", such as !" and !#.

$%
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&$%'"

Self-supervision 
mask
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Ø Unsupervised Training

l NOC-Model: !"
Ø Supervised Fine-tuning

l Initialize with pre-trained OCC-Model, fine-tune with GT flow

Photometric Loss !"

Photometric Loss !"

Loss for Occluded 

pixels !#
+

Our method removes the reliance of pre-training on synthetic data.

l OCC-Model: !" + !#
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Quantitative Results 
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Our unsupervised method outperforms all existing 
unsupervised methods on all datasets except Sintel Clean.
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Our unsupervised method even outperforms several famous 
fully-supervised methods.
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Our fine-tuned models achieve state-of-the-art results 
without using any external labeled data.
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Our fine-tuned result on Sintel achieves EPE=4.26, 
outperforming all submitted methods (Rank 1 until now). 
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Ablation study
Ø Occlusion Handling, multiple-frame formulation and self-supervision

consistently improve the flow estimation performance.
Ø We employ two extensions for noise injection: rectangle and superpixel.

Superpixel setting works a litter better.
n The shape of superpixels are usually random, which is consistent with the

real-world cases.
n The pixels within each superpixel usually belong to the same object or

have similar flow fields. Low-level segmentation can be helpful for the
optical flow estimation.
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Qualitative Results 
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Sample unsupervised results on Sintel and KITTI dataset. From
top to bottom, we show samples from Sintel Final, KITTI 2012
and KITTI 2015.
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Effect of Self-Supervision
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Without Self-supervision
Reference Image

Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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Without Self-supervision

With Self-supervision

Reference Image

Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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Reference Image

Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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With Self-supervision

Without Self-supervision
Reference Image

Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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Reference Image

Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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Reference Image

Flow Estimation
without Self-supervision

Flow Estimation
with Self-supervision
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Comparing with PWC-Net, our fine-tuned model estimates 
optical flow with more accurate details.
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Reference Image

Flow Estimation
using PWC-Net

Flow Estimation
using Our Fine-tuned 

Model
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Reference Image

Flow Estimation
using PWC-Net

Flow Estimation
using Our Fine-tuned 

Model
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Reference Image

Flow Estimation
using PWC-Net

Flow Estimation
using Our Fine-tuned 

Model
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Reference Image

Flow Estimation
using PWC-Net

Flow Estimation
using Our Fine-tuned 

Model
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To demonstrate the generalization ability of our model, we further 
show our flow estimation on real-word videos (from the DAVIS dataset). 
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Reference Image

Flow from Our 
Unsupervised

Model

Flow from Our
Fine-tuned

Model
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Reference Image

Flow from Our 
Unsupervised

Model

Flow from Our
Fine-tuned

Model
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Conclusion

ØWe  present a self-supervised approach to learning accurate 
optical flow for both occluded and non-occluded pixels.

ØOur self-supervised pre-training reduces the reliance of pre-
training on synthetic labeled datasets.

ØOur method achieves state-of-the-art results on KITTI and
Sintel benchmarks (currently No.1 on Sintel).

ØCode available: https://github.com/ppliuboy/SelFlow

38

https://github.com/ppliuboy/SelFlow
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