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OUTLINE

Ø Background

Ø Our works

• PU-Net --- accepted by CVPR, 2018

• EC-Net --- accepted by ECCV, 2018

• PU-GAN --- accepted by ICCV, 2019

Ø Future works
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Point cloud upsampling:

sparse input dense outputupsampling

Applications:
• Better point cloud rendering
• Be helpful for mesh reconstruction
• Improve recognition accuracy

Background
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Point cloud upsampling:

sparse input dense outputupsampling

Requirements:

• Generated points should be located on the underlying surface.

• Generated points should have a uniform distribution.

Background
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Related Works

Point cloud upsampling:

- Assume that the underlying surface is smooth:
• Interpolate points at vertices of a Voronoi diagram [1]

• Resampling points via a locally optimal projection (LOP) [2]

• Address the point density problem via a weighted LOP [3]

- Rely on extra geometric attributes, e.g. normal:
• Edge-aware point set resampling [4]

• Fast surface reconstruction via a continuous version of LOP [5]

[1] M. Alexa, et al. “Computing and rendering point set surfaces.” TVCG, 2003.
[2] Y. Lipman, et al. “Parameterization-free projection for geometry reconstruction.” SIGGRAPH, 2007.
[3] H. Huang, et al. “Consolidation of unorganized point clouds for surface reconstruction.” SIGGRAPH Asia, 2009.
[4] H. Huang, et al. “Edge-aware point set resampling.” TOG, 2013.
[5] R. Preiner, et al. “Continuous projection for fast L1 reconstruction.” SIGGRAPH, 2014.

hand-crafted features à lack of semantic information
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PU-Net: Point cloud Upsampling Network
CVPR，2018
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Our work: PU-Net

- How to prepare training data?

- How to expand the number of points?

- How to design loss functions to guide the network training?
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1. Patch Extraction

Generate ground truth:

- Randomly select 𝑀 points on the surface of mesh.

- Grow a surface patch in a ring-by-ring manner.

- Poisson disk sampling to generate "𝑁 points on each patch as ground truth.

Our work: PU-Net

Ground truth

Generate input:

- No “correct pairs” of input and ground truth.
- On-the-fly input generation scheme: input points are randomly sampled from the ground 

truth point sets with a downsampling rate of 𝑟.
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2. Point Feature Embedding

- Hierarchical feature learning

- Feature restoration by interpolation

• Features of red points are extracted by 

hierarchical manner

• Features of green points are interpolated 

using features from the nearest points. 

- Multi-level feature aggregation

• More helpful for upsampling task 

Our work: PU-Net
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3. Feature Expansion

The dimension of embedded feature 𝑓 is 𝑁× '𝐶, then the feature expansion 

operation can be represented as:

𝑓) = ℛ𝒮 𝒞./ 𝒞.. 𝑓 ,… , 𝒞2/ 𝒞2. 𝑓

where 𝒞3. ⋅ and 𝒞3/ ⋅ are two sets of 1×1 convolution, 𝑟 is the upsampling

rate, and ℛ𝒮(⋅) is a reshape operation to convert an 𝑁×𝑟 '𝐶2 tensor to a tensor of 

size 𝑟𝑁× '𝐶2

• The reason why we use two convolutions:

Break the high correlation among the 𝑟 feature sets generated from the first 

convolution 𝒞3. ⋅ .

Our work: PU-Net
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4. Coordinate Reconstruction

Regress the 3D coordinates via a series of fully connected layers.

Our work: PU-Net
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Requirements of point cloud upsampling:

- The generated points should describe the underlying geometry surface.

- The generated point should be informative and should not clutter together.

Our work: PU-Net
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Joint loss function: 𝐿 𝜽 = 𝐿2;< + 𝛼𝐿2;? + 𝛽 𝜽 2

- reconstruction loss (Earth Mover’s distance)

• make the generated points locate on the underlying surface

• 𝐿2;< = 𝑑BCD 𝑆?, 𝑆FG = min
∅:MN→MPQ

∑ST∈MN 𝑥3 − ∅(𝑥3) 2

- 𝑆?: predicted point; 𝑆FG: ground truth point;

- ∅: 𝑆? → 𝑆FG indicates the bijection mapping

- repulsion loss

• make the generated points have a more uniform distribution

• 𝐿2;? = ∑3XY
"Z ∑3[∈\(3) 𝜂 𝑥3[ − 𝑥3 𝑤( 𝑥3[ − 𝑥3 )

- "𝑁: the number of output points; 𝐾(𝑖): k-nearest neighborhood of 𝑥3
- repultion term: 𝜂 𝑟 = −𝑟

- fast-decaying weight function: 𝑤 𝑟 = 𝑒b2c/ec

reconstruction loss

repulsion loss

: ground truth

: predicted point

Our work: PU-Net
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Datasets:

- No public benchmark dataset for point cloud upsampling

- Training:

• collect 40 objects from Visionair repository, cut 100 patches for each object

• Poisson disk sampling on each patch to generate 𝑟𝑁 = 4096 points as ground truth

• then randomly select 𝑁 = 1024 points on the ground truth and add Gaussian noise as input

- Testing:

• objects from Visionair, SHREC15, ModelNet40 and ShapeNet

• use Monte-Carlo random sampling approach to sample 5,000 points on each object as input

Our work: PU-Net
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Evaluation metrics:

- To evaluate the surface deviation: Deviation

1, Find the closest point j𝑥3 on the mesh for each predicted point 𝑥3, and calculate the distance.

2, Compute the mean and standard deviation over all the points.

- To evaluate the point uniformity: normalized uniformity coefficient (NUC)

1, Put 𝐷 equal-size disks on the object surface (𝐷 = 9000 in our experiments).

2, Calculate the standard deviation of the number of points inside the disks.

3, Normalize the density of each object and then compute the overall uniformity of the point sets 

over all the 𝐾 objects in the testing dataset.

Our work: PU-Net

𝑁l: the total number of points on the 𝑘-th object; 𝑛3l: the number of points within the 𝑖-th disk of the 𝑘-th object;
𝑝 is the percentage of the disk area over the total object surface area. 
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Comparison with the optimization-based method:
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input EAR[1] with increasing radius our method

[1] H. Huang, et al. “Edge-aware point set resampling.” TOG, 2013.

Visual comparisons with EAR method [1]. We color-code all points to show the deviation from ground truth mesh.

Our work: PU-Net
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Comparison with deep learning-based baselines:

input PointNet*[1] our method
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Visual comparisons with deep learning-based baselines. We modify the original point cloud recognition networks by using our
feature expansion module and the loss functions. The colors on points reveal the surface distance errors, where blue indicates low
error and red indicates high error.

Our work: PU-Net

[1] Charles R. Qi, et al. “PointNet: deep learning on point sets for 3D classification and segmentation.” CVPR, 2017.
[2] Charles R. Qi, et al. “PointNet++: deep hierarchical feature learning on point sets in a metric space.” NIPS, 2017.
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Our work: PU-Net

Table 1. Quantitative comparison on our collected dataset.

Table 2. Quantitative comparison on SHREC15 dataset.

Comparison with deep learning-based baselines :

Xianzhi Li 22



Results of surface reconstruction:

ground truthPointNet* our methodPointNet++* PointNet++ (MSG)*

Surface reconstruction results from the upsampled point clouds.

Our work: PU-Net
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Robustness to noise:

Input sparse point sets are contaminated by different level of Gaussian noise. Surface reconstruction results show that our
upsampling method is robust to noise.

(a) inputs: noisy point clouds (b) reconstructed directly from 
inputs

(c) reconstructed from network 
outputs

0.5%

1%

Our work: PU-Net
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Results on real-scanned models:

Results on real scanned point clouds. We color-code input patches and upsampling results to show the depth information. Blue
points are more close to us.

input patch output patch

Our work: PU-Net
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More results on ModelNet40 dataset:

Our work: PU-Net
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More results on ModelNet40 dataset :

Our work: PU-Net
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input reconstructed from PU-Net

Upsampling problems are typically more severe near sharp edges! 
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EC-Net: an Edge-aware Point Set
Consolidation Network

ECCV，2018

Xianzhi Li 29



input reconstructed from PU-Net

Upsampling problems are typically more severe near sharp edges 

Edge-aware Point Cloud Upsampling Network (EC-Net):

ü Upsample points

ü Detect edge points

ü Arrange more points on edges
Xianzhi Li 30



Edge-aware Point Cloud Upsampling Network (EC-Net):

Our work: EC-Net

- Training data preparation

- Point coordinate regression

- Joint loss function

Xianzhi Li 31



Edge-aware Point Cloud Upsampling Network (EC-Net):

Our work: EC-Net

- Training data preparation: virtual scanning to generate points from meshes, rather than sampling

(1) Put virtual camera

(2) Generate depth map, add quantization noise

(3) Back-projection
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Edge-aware Point Cloud Upsampling Network (EC-Net):

Our work: EC-Net

- Point coordinate regression: regress residual coordinates, rather than directly regress point

coordinates
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Edge-aware Point Cloud Upsampling Network (EC-Net):

Our work: EC-Net

- Joint loss function: further propose the edge distance regression loss & edge loss
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Our work: EC-Net

Edge-aware Joint Loss Function:

- Repulsion loss: the same as that in PU-Net

- Surface loss:

• 𝐿pq2r =
.
sZ
∑.t3tsZ 𝑑u

/ (𝑥3, 𝑇) where s𝑁 is the number of output points

• 𝑑u/ 𝑥3, 𝑇 = min
G∈u

𝑑G(𝑥3, 𝑡) is the minimum shortest distance from each point 𝑥3 to all the mesh 

triangles T

- Edge distance regression loss: regress point-to-edge distance

• 𝐿2;F2 =
.
sZ
∑.t3tsZ Γy 𝑑B/ 𝑥3, 𝐸 − Γy(𝑑3)

/
, where Γy 𝑥 = max(0,min(𝑥, 𝑏))

- Edge loss: encourage detected edge points locating along edges

• 𝐿;~F; =
.

sZ;~F;
∑.t3tsZ;~F;

𝑑B/ (𝑥3, 𝐸) where s𝑁𝑒𝑑𝑔𝑒 is the number of edge points

• 𝑑B/ 𝑥3, 𝐸 = min
;∈B

𝑑;(𝑥3, 𝑒) is the minimum shortest distance from each point 𝑥3 to all the edge 

segments E
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Our work: EC-Net

Surface reconstruction results:
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Our work: EC-Net

Surface reconstruction results:
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Our work: EC-Net

Comparison with other methods:
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Our work: EC-Net

Results on real scans:
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PU-GAN: a Point Cloud Upsampling
Adversarial Network

ICCV，2019
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Our work: PU-GAN

Generative adversarial nets (GAN) [1]:

[1] Goolfellow, Ian, Pouget-Abadie, Jean, et al. “Generative adversarial nets.” NIPS, 2014. 
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Our work: PU-GAN

Applications of GANs:

[1] P. Isola, et al. “Image-to-image translation with conditional adversarial networks.” CVPR 2017.
[2] C. Ledig, et al. “Photo-realistic single image super-resolution using a generative adversarial network.” CVPR 2017.
. 

Style-transfer [1]

Image super-resolution [2]

……
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Our work: PU-GAN

Point cloud upsampling adversarial network (PU-GAN):
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Our work: PU-GAN

Point cloud upsampling adversarial network (PU-GAN):
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Our work: PU-GAN

Up-down-up expansion unit:
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Our work: PU-GAN

Up-down-up expansion unit:
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Our work: PU-GAN

Up-down-up expansion unit:
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Our work: PU-GAN

Up-down-up expansion unit:
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Our work: PU-GAN

Up-down-up expansion unit:
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Our work: PU-GAN

Loss functions:

• Reconstruction loss (underlying surface):

• Adversarial loss: 

• Uniform loss:

Global point
coverage

Local point
distribution
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Our work: PU-GAN

[1] A. Geiger, et al. “Vision meets robotics: The KITTI dataset.” The International Journal of Robotics Research. 2013.

Results on real-scanned dataset [1]:
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Our work: PU-GAN

[1] A. Geiger, et al. “Vision meets robotics: The KITTI dataset.” The International Journal of Robotics Research. 2013.

Results on real-scanned dataset [1]:
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Our work: PU-GAN

[1] A. Geiger, et al. “Vision meets robotics: The KITTI dataset.” The International Journal of Robotics Research. 2013.

Results on real-scanned dataset [1]:
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Our work: PU-GAN

[1] A. Geiger, et al. “Vision meets robotics: The KITTI dataset.” The International Journal of Robotics Research. 2013.

Results on real-scanned dataset [1]:
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Conclusions

Conclusions:

• Deep neural networks demonstrate powerful capabilities in point cloud upsampling.

Codes of our works are available:

• A space rich of open problems and opportunities.

- point cloud denoise / point cloud completion

- weakly-supervised / unsupervised learning

- domain adaptation / transfer learning

PU-Net EC-Net PU-GAN
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Thank you!

Personal webpage:

https://nini-lxz.github.io/

https://nini-lxz.github.io/

