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 Polarization is a characteristic of all transverse waves.

 Oscillation which take places in a transverse wave in many different directions is 

said to be unpolarized.

 In an unpolarized transverse wave oscillations may take place in any direction at 

right angles to the direction in which the wave travels.

Polarization
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 Unpolarized light can be polarized, either partially or completely, by reflection.

 The amount of polarization in the reflected beam depends on the angle of 

incidence.

Polarization by Reflection
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 Polarizer is made from long chain molecules oriented with their axis 

perpendicular to the polarizing axis; 

 These molecules preferentially absorb light that is polarized along their length.

Polarizer
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 Images with a Rotating Polarizer

 Pixel intensity varies with polarizer angles

 We can recover geometric information from polarized images

Polarimetric Imaging
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 Estimation of the azimuth angle 𝜑 (diffuse reflection):

 Estimation of the zenith angle 𝜃 (diffuse reflection): 

 Estimation of the surface normal v:  

Surface Normal from Polarization
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Normal
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𝜙𝑝𝑜𝑙

Light

𝐼 𝜙𝑝𝑜𝑙 =
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

2
+
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

2
cos 2 𝜙𝑝𝑜𝑙 − 𝜙

𝜑 = 𝜙 or         𝜑 = 𝜙 + 𝜋

𝜌 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
=

𝑛 − 1/𝑛 2 sin2 𝜃

2 + 2𝑛2 − 𝑛 + 1/𝑛 sin2 𝜃 + 4 cos 𝜃 𝑛2 − sin2 𝜃

v = 𝑣𝑥, 𝑣𝑦 , 𝑣𝑧
T
= cos𝜑 sin 𝜃 ,− sin𝜑 sin 𝜃 ,− cos 𝜃 T
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Polarimetric 3D Reconstruction
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c c′[R, t]

Polarimetric Multiple-View Stereo Polarimetric Dense Monocular SLAM

Polarimetric Relative Pose Estimation
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 Given several images of the same object or scene, compute a representation of 

its 3D shape.

 Traditional methods usually failed for featureless objects.

Traditional Multi-View Stereo
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Shape from Surface Normal
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[Xie et al. CVPR’19] 
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Surface normal estimation from polarization is hard:

 Refractive distortion: Zenith angle estimation requires the knowledge of the 

refractive index.

 Azimuthal ambiguity: The estimation of the azimuthal angle has 𝜋-ambiuity.

 Mixed reflection in real environment.

Challenges
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𝐼 𝜙𝑝𝑜𝑙 =
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

2
+
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

2
cos 2 𝜙𝑝𝑜𝑙 − 𝜙

𝜑 = 𝜙 or         𝜑 = 𝜙 + 𝜋
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Mixed Reflection
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Proposition 1. Under unpolarized illumination, the measured scene radiance from a reflective

surface through a linear polarizer at a polarization angle 𝜓𝑝𝑜𝑙 is

where 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the maximum and minimum measured radiance.

The phase angle ∅ is related to the azimuth angle 𝜑 as follows:

∅ = ቐ
𝜑 𝑖𝑓 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠

𝜑 −
𝜋

2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Polarimetric Multiple View Stereo [CVPR’17]
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𝐼 ∅𝑝𝑜𝑙 =
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

2
+
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

2
cos 2 ∅𝑝𝑜𝑙 − ∅ ,

𝜋/2-ambiguity

* The azimuthal (𝜋) ambiguity still holds. 
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 Exploit polarimetric information for dense reconstruction:

 Use geometric information to help resolve ambiguities of polarimetric information

Polarimetric Multiple View Stereo [CVPR’17]
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 Use geometric information to help resolve 𝜋/2-ambiguity 

Polarimetric Multiple View Stereo [CVPR’17]

12/20/2019Zhaopeng Cui 15

Initial 

depth
Depth after 

consistency 

check

Phase angle 

map

Azimuth angle map

(after solving 𝜋/2-

ambiguity)

𝐸 𝑓𝑝 = ෍

𝑝∈𝒫

𝐷 𝑓𝑝 +𝜆 ෍

𝑝,𝑞∈𝒩

𝑆(𝑓𝑝, 𝑓𝑞) 𝑓𝑝 = ቊ
0, 𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑑 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠
1, 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠

𝐷 𝑓𝑝 enforces consistency with MVS at well-textured regions.

𝑆(𝑓𝑝, 𝑓𝑞) enforces neighboring pixels to have similar azimuth angles.
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 Exploit polarimetric information for dense reconstruction:

 Use geometric information to help resolve ambiguities of polarimetric information

 Use polarimetric information to improve geometric information 

Polarimetric Multiple View Stereo [CVPR’17]
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 Iso-depth contour tracing: Propagate reliable depth values along iso-depth 

contour 

1. Phase angle determine the projected surface normal direction (with 𝜋-ambiguity)

2. From the normal, we can get iso-depth contour on which the pixels have with the same depth

3. Propagate sparse depth values along iso-depth contour

Polarimetric Multiple View Stereo [CVPR’17]
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 Per-frame depth optimization 

෍

(𝑥,𝑦)∈𝒫

𝐸𝑝 𝑑 𝑥, 𝑦 + 𝛾𝐸𝑑 𝑑 𝑥, 𝑦 + |∆𝑑(𝑥, 𝑦)|

Polarimetric Multiple View Stereo [CVPR’17]
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Polarimetric multiple view stereo [CVPR17]

12/20/2019Zhaopeng Cui 19



||

Polarimetric Dense Monocular SLAM [CVPR’18] 
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Polarimetric Dense Monocular SLAM [CVPR’18] 
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 Phase angle disambiguation: Using rough depth to solve the 𝜋/2-ambiguity

 Intuition: The correct iso-contour should have less depth variation.

 Strategy: Trace two local contours, select the one with less depth variance.

Polarimetric Dense Monocular SLAM [CVPR’18] 
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 Depth propagation along contours

 Issue: wrong propagation caused by noisy 3D points

 Solution:  Two-View propagation and validation

Polarimetric Dense Monocular SLAM [CVPR’18] 
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Inlier Points Propagated Points (Using Single-View)

Phase map
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Polarimetric Dense Monocular SLAM [CVPR’18] 
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 5-point algorithm:

Traditional Relative Pose Estimation
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c c′[R, t]
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Surface normal estimation from polarization is hard:

 Refractive distortion: Zenith angle estimation requires the knowledge of the 

refractive index

 Azimuthal ambiguity: The estimation of the azimuthal angle has 𝜋-ambiuity 

 Mixed reflection in real environment.

Challenges
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𝐼 𝜙𝑝𝑜𝑙 =
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

2
+
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

2
cos 2 𝜙𝑝𝑜𝑙 − 𝜙

𝜑 = 𝜙 or         𝜑 = 𝜙 + 𝜋

4𝑛 possibilities given n 

pairs of correspondences.
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Two-point relative pose estimation:

Polarimetric Relative Pose Estimation [ICCV’19] 
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c c′[R, t]

 Step 1. Solve the relative rotation:

m𝑖𝑛
R∈𝑆𝑂(3)

Rv1 − v1
′ 2 + Rv2 − v2

′ 2

R = U diag 1,1, det UVT VT

UΣVT = v1
′v1

T + v2
′ v2

T

 Step 2. Solve the relative translation:

x𝑖
′ ∙ t × Rx𝑖 = t ∙ Rx𝑖 × x𝑖

′ = 0, 𝑖 = 1,2

t = (Rx1 × x1
′ ) × (Rx2 × x2

′ )

 Step 3. Hypothesis validation to choose the one which has the largest consensus.
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Resolving the azimuth angle ambiguity

 We can recover the correct azimuth angles (𝜑, 𝜑′) by considering the alignment 

error:

For each correspondence we only need to check four cases:

and select the one which minimizes the alignment residual.

Polarimetric Relative Pose Estimation [ICCV’19]
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𝜙,𝜙′ , 𝜙 + 𝜋, 𝜙′ , 𝜙, 𝜙′ + 𝜋 and 𝜙 + 𝜋,𝜙′ + 𝜋 ,

Rv 𝜑 − v′ 𝜑′ 2
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Polarimetric two-view local refinement: Optimizing jointly over the relative pose and 

the refractive indices:

where 𝑓𝑠𝑎𝑚𝑝 R, t is the standard squared Sampson loss,

Polarimetric Relative Pose Estimation [ICCV’19] 
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m𝑖𝑛
R∈𝑆𝑂 3 ,t∈𝕊2, 𝑛𝑖

𝑓𝑠𝑎𝑚𝑝 R, t + 𝑓𝑛𝑜𝑟𝑚 R, 𝑛𝑖 + 𝑓𝑝𝑟𝑖𝑜𝑟 𝑛𝑖 ,

𝑓𝑛𝑜𝑟𝑚 R, 𝑛𝑖 = 𝛾𝑛𝑜𝑟𝑚𝑎𝑙෍

𝑖=1

𝑚

Rv𝑖 𝑛𝑖 − v𝑖
′ 𝑛𝑖

2 ,

𝑓𝑝𝑟𝑖𝑜𝑟 𝑛𝑖 = 𝛾𝑝𝑟𝑖𝑜𝑟෍

𝑖=1

𝑚

(𝑛𝑖 − 𝑛𝑖
0)2.
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 Comparison with 5-point algorithm on synthetic data

Polarimetric Relative Pose Estimation [ICCV’19] 
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5-point Ours

Initial Sampson Initial Sampson Optimized

𝑅𝑒𝑟𝑟 6.10 4.95 2.30 3.59 1.80

𝑡𝑒𝑟𝑟 9.30 7.37 3.25 4.08 2.52
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 Performance with different initial guess of the refractive index

Polarimetric Relative Pose Estimation [ICCV’19] 
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 Background

 Polarimetric 3D Reconstruction

 Polarimetric Multiple-View Stereo [CVPR’2017]

 Poalrimetric Dense Monocular SLAM [CVPR’2018]

 Poalrimetric Relative Pose Estimation [ICCV’2019]

 Polarimetric Reflection Separation [NeurIPS’2019]

 Conclusion

Outline
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Reflection Separation
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 An ill-posed problem

Reflection Separation

12/20/2019Zhaopeng Cui 36

TransmissionCaptured Reflection

𝐼𝑡𝐼 𝐼𝑟
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Previous Solutions
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Additional Input

• Different viewpoints

[Gai et al. 12] [Guo et al. 14] [Xue et al. 15]

• Different polarization angles
[Schechner et al. 00] [Wieschollek et al. 18]

Additional Priors

• Gradient sparsity priors 
[Levin et al. 07] [Wan et al. 18]

• Relative smoothness priors
[Li et al. 14] [Arvanitopoulos et al. 17]

[Wan et al. 18] [Wieschollek et al. 18]

Violate in real-world

scenarios

Complicated 

capturing operations
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We design an end-to-end neural network which takes 

a pair of (un)polarized images for reflection separation 

based on a new physical image formation model.
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New Setup: (un)polarized images
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Without polarizer

in front of the camera

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 = 𝐼𝑟 𝑥 ⋅
𝜉(𝑥)

2
+ 𝐼𝑡 𝑥 ⋅

2 − 𝜉(𝑥)

2

Transmission

Reflection

Glass

Camera

𝐼𝑟 𝑥

𝐼𝑡 𝑥

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥

𝐼𝑢𝑛𝑝𝑜𝑙 𝐼𝑟 𝐼𝑡

𝜃(𝑥)

𝜉 𝑥 = 𝑓1 𝜃(𝑥)

𝜉

𝜃
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New Setup: (un)polarized images
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𝐼𝑝𝑜𝑙 𝑥 = 𝐼𝑟 𝑥 ⋅
𝜁(𝑥)

2
+ 𝐼𝑡 𝑥 ⋅

1 − 𝜁(𝑥)

2

𝐼𝑝𝑜𝑙 𝐼𝑟 𝐼𝑡

With polarizer

in front of the camera

Transmission

Reflection

Glass

Camera

𝐼𝑟 𝑥

𝐼𝑡 𝑥

𝐼𝑝𝑜𝑙 𝑥

𝜙

𝜙⊥(𝑥)

Polarizer 

𝜃(𝑥)

𝜁 𝑥 = 𝑓2 𝜃 𝑥 , 𝜙⊥(𝑥)

𝜁

𝜃
𝜙⊥ − 𝜙
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New Setup: (un)polarized images
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Without polarizer: 

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 = 𝐼𝑟 𝑥 ⋅
𝜉(𝑥)

2
+ 𝐼𝑡 𝑥 ⋅

2 − 𝜉(𝑥)

2

With polarizer: 

𝐼𝑝𝑜𝑙 𝑥 = 𝐼𝑟 𝑥 ⋅
𝜁(𝑥)

2
+ 𝐼𝑡 𝑥 ⋅

1 − 𝜁(𝑥)

2

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 , 𝐼𝑝𝑜𝑙 𝑥

𝜃(𝑥), 𝜙⊥(𝑥)
⇒ 𝐼𝑡 𝑥 , 𝐼𝑟 𝑥

How to compute 𝜃 𝑥 and 𝜙⊥ 𝑥 ?
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Physical Image Formation Model
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𝜙⊥ 𝑥 = arctan
𝑦𝑃𝑜𝐼

𝑥𝑃𝑜𝐼

where 𝑥𝑃𝑜𝐼 , 𝑦𝑃𝑜𝐼 , 𝑧𝑃𝑜𝐼
T = 𝐧𝑔𝑙𝑎𝑠𝑠 × ഥ𝐗

𝜃 𝑥 = arcos 𝐧𝑔𝑙𝑎𝑠𝑠 ⋅ ഥ𝐗
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Physical Image Formation Model
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𝛼, 𝛽 ⇒ 𝐧𝑔𝑙𝑎𝑠𝑠

𝑥

𝑦

𝑧

𝑂

𝑥

𝑦
𝛼

𝛽
𝑥

𝑦

𝐧𝑔𝑙𝑎𝑠𝑠
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Physical Image Formation Model
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Without polarizer: 

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 = 𝐼𝑟 𝑥 ⋅
𝜉(𝑥)

2
+ 𝐼𝑡 𝑥 ⋅

2 − 𝜉(𝑥)

2

With polarizer: 

𝐼𝑝𝑜𝑙 𝑥 = 𝐼𝑟 𝑥 ⋅
𝜁(𝑥)

2
+ 𝐼𝑡 𝑥 ⋅

1 − 𝜁(𝑥)

2

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 , 𝐼𝑝𝑜𝑙 𝑥

𝛼, 𝛽
⇒ 𝐼𝑡 𝑥 , 𝐼𝑟 𝑥

𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 , 𝐼𝑝𝑜𝑙 𝑥

𝜃(𝑥), 𝜙⊥(𝑥)
⇒ 𝐼𝑡 𝑥 , 𝐼𝑟 𝑥
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Reflection Separation Network

12/20/2019Zhaopeng Cui 45



||

Reflection Separation Network
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Reflection Separation Network
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𝐼𝑢𝑛𝑝𝑜𝑙 𝑥 , 𝐼𝑝𝑜𝑙 𝑥

𝜃 𝑥 , 𝜙⊥ 𝑥
⇒ መ𝐼𝑡 𝑥 , መ𝐼𝑟 𝑥

𝜃 𝑥 = arcos 𝐧𝑔𝑙𝑎𝑠𝑠 ⋅ ഥ𝐗

𝑥𝑃𝑜𝐼 , 𝑦𝑃𝑜𝐼 , 𝑧𝑃𝑜𝐼
T = 𝐧𝑔𝑙𝑎𝑠𝑠 × ഥ𝐗

𝜙⊥ 𝑥 = arctan
𝑦𝑃𝑜𝐼

𝑥𝑃𝑜𝐼
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Reflection Separation Network
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መ𝐼𝑡 𝑥 , መ𝐼𝑟 𝑥 ⇒ 𝐼𝑡 𝑥 , 𝐼𝑟(𝑥)
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Evaluation on Synthetic Data
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Ours
Ours-

Initial

ReflectNet-

Finetuned

Ours-

2% noise

Ours-

8% noise

Ours-

16% noise

Transmission

SSIM 0.9708 0.8324 0.9627 0.9691 0.9668 0.9619

PSNR 28.23 21.61 27.52 28.08 27.31 27.17

Reflection

SSIM 0.8953 0.6253 0.8303 0.8785 0.8418 0.8022

PSNR 20.92 13.90 18.50 20.53 19.18 18.26
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Evaluation on Synthetic Data
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[3] X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. In Proc. CVPR, 2018.
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Evaluation on Synthetic Data
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[1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.
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 Polarization conveys both geometric and physical cues of the surrounding 

environment. 

 The encoded rough geometric information in polarization can contribute to 3D 

reconstruction.

 The polarization is helpful for image reflection separation. 

Conclusion
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 The current physical model for polarization is ideal to some extent, and more 

complex model should be studied. 

 Polarization can be applied to other vision tasks, including image segmentation, 

image dehazing, etc. 

Future Work
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