

Polarimetric 3D Reconstruction and Image Separation

Zhaopeng Cui

ETH Zurich
12.19.2019

Outline

- Polarization and Polarizer
- Polarimetric 3D Reconstruction
- Polarimetric Multiple-View Stereo [CVPR'2017]
- Poalrimetric Dense Monocular SLAM [CVPR'2018]
- Poalrimetric Relative Pose Estimation [ICCV'2019]
- Polarimetric Reflection Separation [NeurIPS'2019]
- Conclusion

Polarization

- Polarization is a characteristic of all transverse waves.
- Oscillation which take places in a transverse wave in many different directions is said to be unpolarized.
- In an unpolarized transverse wave oscillations may take place in any direction at right angles to the direction in which the wave travels.

Polarization by Reflection

- Unpolarized light can be polarized, either partially or completely, by reflection.
- The amount of polarization in the reflected beam depends on the angle of incidence.

Reflection of light off of non-metallic surfaces results in some depree of polarization parallel to the surface.

Polarizer

- Polarizer is made from long chain molecules oriented with their axis perpendicular to the polarizing axis;
- These molecules preferentially absorb light that is polarized along their length.

Polarimetric Imaging

- Images with a Rotating Polarizer
- Pixel intensity varies with polarizer angles
- We can recover geometric information from polarized images

GIHzürich

Surface Normal from Polarization

- Estimation of the azimuth angle φ (diffuse reflection):

$$
\begin{aligned}
& I\left(\phi_{\text {pol }}\right)=\frac{I_{\text {max }}+I_{\text {min }}}{2}+\frac{I_{\max }-I_{\text {min }}}{2} \cos \left(2\left(\phi_{\text {pol }}-\phi\right)\right) \\
& \varphi=\phi \quad \text { or } \quad \varphi=\phi+\pi
\end{aligned}
$$

- Estimation of the zenith angle θ (diffuse reflection):

$$
\rho=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{(n-1 / n)^{2} \sin ^{2} \theta}{2+2 n^{2}-(n+1 / n) \sin ^{2} \theta+4 \cos \theta \sqrt{n^{2}-\sin ^{2} \theta}}
$$

- Estimation of the surface normal v :
$\mathrm{v}=\left(v_{x}, v_{y}, v_{z}\right)^{\mathrm{T}}=(\cos \varphi \sin \theta,-\sin \varphi \sin \theta,-\cos \theta)^{\mathrm{T}}$

Polarimetric 3D Reconstruction

Traditional Multi-View Stereo

- Given several images of the same object or scene, compute a representation of its 3D shape.
- Traditional methods usually failed for featureless objects.

Input Sample

Shape from Surface Normal

Challenges

Surface normal estimation from polarization is hard:

- Refractive distortion: Zenith angle estimation requires the knowledge of the refractive index.
- Azimuthal ambiguity: The estimation of the azimuthal angle has π-ambiuity.

$$
\begin{aligned}
& I\left(\phi_{\text {pol }}\right)=\frac{I_{\text {max }}+I_{\text {min }}}{2}+\frac{I_{\text {max }}-I_{\text {min }}}{2} \cos \left(2\left(\phi_{\text {pol }}-\phi\right)\right) \\
& \varphi=\phi \quad \text { or } \quad \varphi=\phi+\pi
\end{aligned}
$$

- Mixed reflection in real environment.

Mixed Reflection

Polarimetric Multiple View Stereo [cVPR'17]

Proposition 1. Under unpolarized illumination, the measured scene radiance from a reflective surface through a linear polarizer at a polarization angle $\psi_{\text {pol }}$ is

$$
I\left(\emptyset_{p o l}\right)=\frac{I_{\max }+I_{\min }}{2}+\frac{I_{\max }-I_{\min }}{2} \cos \left(2\left(\emptyset_{p o l}-\emptyset\right)\right)
$$

where $I_{\max }$ and $I_{\text {min }}$ are the maximum and minimum measured radiance.
The phase angle \varnothing is related to the azimuth angle φ as follows:

$$
\begin{gathered}
\emptyset= \begin{cases}\varphi & \text { if polarized diffuse reflection dominates } \\
\varphi-\frac{\pi}{2} & \text { otherwise }\end{cases} \\
\pi / 2 \text {-ambiguity }
\end{gathered}
$$

Polarimetric Multiple View Stereo [CVPR'17]

- Exploit polarimetric information for dense reconstruction:
- Use geometric information to help resolve ambiguities of polarimetric information

Polarimetric Multiple View Stereo [CVPR'17]

- Use geometric information to help resolve $\pi / 2$-ambiguity

$D\left(f_{p}\right)$ enforces consistency with MVS at well-textured regions.
$S\left(f_{p}, f_{q}\right)$ enforces neighboring pixels to have similar azimuth angles.

Polarimetric Multiple View Stereo [CVPR'17]

- Exploit polarimetric information for dense reconstruction:
- Use geometric information to help resolve ambiguities of polarimetric information
- Use polarimetric information to improve geometric information

Polarimetric Multiple View Stereo [CVPR'17]

- Iso-depth contour tracing: Propagate reliable depth values along iso-depth contour

1. Phase angle determine the projected surface normal direction (with π-ambiguity)
2. From the normal, we can get iso-depth contour on which the pixels have with the same depth
3. Propagate sparse depth values along iso-depth contour

Polarimetric Multiple View Stereo [CVPR'17]

- Per-frame depth optimization

$$
\left.\sum_{(x, y) \in \mathcal{P}} E_{p}(d(x, y))+\gamma E_{\substack{\text { constraint from } \\ \text { azimuth angles }}}+\frac{|\Delta d(x, y)|}{\substack{\text { constraint from } \\ \text { known 3D points }}} \right\rvert\,
$$

Polarimetric Multi-View Stereo Supplementary Material

Paper ID 579

Polarimetric Dense Monocular SLAM [CVPR'18]

DSLR + Polarizer Filters

Rotate the polarizer filter manually

video with multiple polarized image

Polarimetric Dense Monocular SLAM [CVPR'18]

Polarimetric Dense Monocular SLAM [CVPR'18]

- Phase angle disambiguation: Using rough depth to solve the $\pi / 2$-ambiguity
- Intuition: The correct iso-contour should have less depth variation.
- Strategy: Trace two local contours, select the one with less depth variance.

Captured
Polarized Images

Phase Angle Map

Disambiguation Results

Polarimetric Dense Monocular SLAM [CVPR'18]

- Depth propagation along contours
- Issue: wrong propagation caused by noisy 3D points
- Solution: Two-View propagation and validation

Inlier Points

Propagated Points (Using Single-View)

Polarimetric Dense Monocular SLAM [CVPR'18]

Inlier points \boldsymbol{X}^{i-1} iteration i-1

Propagate depth in the current Keyframe

Propagate depth in the reference Keyframe

New Inlier points X^{i}
iteration i

SFU $\begin{aligned} & \text { Simon fraser university } \\ & \text { engaging the world }\end{aligned}$

Traditional Relative Pose Estimation

- 5-point algorithm:

Challenges

Surface normal estimation from polarization is hard:

- Refractive distortion: Zenith angle estimation requires the knowledge of the refractive index
- Azimuthal ambiguity: The estimation of the azimuthal angle has π-ambiuity

- Mixed reflection in real environment.

Polarimetric Relative Pose Estimation [Iccv'19]

Two-point relative pose estimation:

- Step 1. Solve the relative rotation:

$$
\begin{aligned}
& \min _{\mathrm{R} \in S O(3)}\left\|R \mathrm{v}_{1}-\mathrm{v}_{1}^{\prime}\right\|^{2}+\left\|R v_{2}-\mathrm{v}_{2}^{\prime}\right\|^{2} \\
& \mathrm{R}=\mathrm{U} \operatorname{diag}\left(1,1, \operatorname{det}\left(U V^{\mathrm{T}}\right)\right) \mathrm{V}^{\mathrm{T}} \\
& \mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}=\mathrm{v}_{1}^{\prime} \mathrm{v}_{1}^{\mathrm{T}}+\mathrm{v}_{2}^{\prime} \mathrm{v}_{2}^{\mathrm{T}}
\end{aligned}
$$

- Step 2. Solve the relative translation:

$$
\begin{aligned}
& \mathrm{x}_{i}^{\prime} \cdot\left(\mathrm{t} \times \mathrm{Rx}_{i}\right)=\mathrm{t} \cdot\left(\mathrm{Rx}_{i} \times \mathrm{x}_{i}^{\prime}\right)=0, i=1,2 \\
& \longrightarrow \mathrm{t}=\left(\mathrm{Rx}_{1} \times \mathrm{x}_{1}^{\prime}\right) \times\left(\mathrm{Rx}_{2} \times \mathrm{x}_{2}^{\prime}\right)
\end{aligned}
$$

- Step 3. Hypothesis validation to choose the one which has the largest consensus.

Polarimetric Relative Pose Estimation [Iccv'19]

Resolving the azimuth angle ambiguity

- We can recover the correct azimuth angles $\left(\varphi, \varphi^{\prime}\right)$ by considering the alignment error:

$$
\left\|\operatorname{Rv}(\varphi)-\mathrm{v}^{\prime}\left(\varphi^{\prime}\right)\right\|^{2}
$$

For each correspondence we only need to check four cases:

$$
\left(\phi, \phi^{\prime}\right),\left(\phi+\pi, \phi^{\prime}\right),\left(\phi, \phi^{\prime}+\pi\right) \text { and }\left(\phi+\pi, \phi^{\prime}+\pi\right)
$$

and select the one which minimizes the alignment residual.

Polarimetric Relative Pose Estimation [Iccv'19]

Polarimetric two-view local refinement: Optimizing jointly over the relative pose and the refractive indices:

$$
\min _{\mathrm{R} \in S O(3), \mathrm{t} \in \mathbb{S}^{2},\left\{n_{i}\right\}} f_{\text {samp }}(\mathrm{R}, \mathrm{t})+f_{\text {norm }}\left(\mathrm{R},\left\{n_{i}\right\}\right)+f_{\text {prior }}\left(\left\{n_{i}\right\}\right)
$$

where $f_{\text {samp }}(\mathrm{R}, \mathrm{t})$ is the standard squared Sampson loss,

$$
\begin{aligned}
& f_{\text {norm }}\left(\mathrm{R},\left\{n_{i}\right\}\right)=\gamma_{\text {normal }} \sum_{i=1}^{m}\left\|\mathrm{Rv}_{i}\left(n_{i}\right)-\mathrm{v}_{i}^{\prime}\left(n_{i}\right)\right\|^{2} \\
& f_{\text {prior }}\left(\left\{n_{i}\right\}\right)=\gamma_{\text {prior }} \sum_{i=1}^{m}\left(n_{i}-n_{i}^{0}\right)^{2}
\end{aligned}
$$

Polarimetric Relative Pose Estimation [Iccv'19]

- Comparison with 5-point algorithm on synthetic data

	5-point		Ours		
	Initial	Sampson	Initial	Sampson	Optimized
$R_{\text {err }}$	6.10	4.95	2.30	3.59	$\mathbf{1 . 8 0}$
$t_{\text {err }}$	9.30	7.37	3.25	4.08	$\mathbf{2 . 5 2}$

Polarimetric Relative Pose Estimation [Iccv'19]

- Performance with different initial guess of the refractive index

Outline

- Background
- Polarimetric 3D Reconstruction
- Polarimetric Multiple-View Stereo [CVPR'2017]
- Poalrimetric Dense Monocular SLAM [CVPR'2018]
- Poalrimetric Relative Pose Estimation [ICCV'2019]
- Polarimetric Reflection Separation [NeurIPS'2019]
- Conclusion

Reflection Separation

Reflection Separation

- An ill-posed problem

Previous Solutions

Additional Priors

- Gradient sparsity priors

Additional Input

- Different viewpoints

[Wieschollek et al. 18 _

We design an end-to-end neural network which takes a pair of (un)polarized images for reflection separation based on a new physical image formation model.

New Setup: (un)polarized images

Without polarizer in front of the camera
$I_{\text {unpol }}(x)=I_{r}(x) \cdot \frac{\xi(x)}{2}+I_{t}(x) \cdot \frac{2-\xi(x)}{2}$
$\xi(x)=f_{1}(\theta(x))$

Camera

New Setup: (un)polarized images

With polarizer
in front of the camera

$$
I_{p o l}(x)=I_{r}(x) \cdot \frac{\zeta(x)}{2}+I_{t}(x) \cdot \frac{1-\zeta(x)}{2}
$$

$\zeta(x)=f_{2}\left(\theta(x), \phi_{\perp}(x)\right)$

Transmission

New Setup: (un)polarized images

Without polarizer:
$I_{\text {unpol }}(x)=I_{r}(x) \cdot \frac{\xi(x)}{2}+I_{t}(x) \cdot \frac{2-\xi(x)}{2}$
With polarizer:

$I_{\text {pol }}(x)=I_{r}(x) \cdot \frac{\zeta(x)}{2}+I_{t}(x) \cdot \frac{1-\zeta(x)}{2}$

How to compute $\theta(x)$ and $\phi_{\perp}(x)$?

Physical Image Formation Model

Physical Image Formation Model

$$
\alpha, \beta \Rightarrow \mathbf{n}_{\text {glass }}
$$

Physical Image Formation Model

Without polarizer:
$I_{\text {unpol }}(x)=I_{r}(x) \cdot \frac{\xi(x)}{2}+I_{t}(x) \cdot \frac{2-\xi(x)}{2}$
With polarizer:

$$
I_{p o l}(x)=I_{r}(x) \cdot \frac{\zeta(x)}{2}+I_{t}(x) \cdot \frac{1-\zeta(x)}{2}
$$

Reflection Separation Network

Reflection Separation Network

Reflection Separation Network

Reflection Separation Network

Evaluation on Synthetic Data

		Ours	OursInitial	ReflectNetFinetuned	Ours2\% noise	Ours8\% noise	Ours16% noise
Transmission	SSIM	0.9708	0.8324	0.9627	0.9691	0.9668	0.9619
	PSNR	28.23	21.61	27.52	28.08	27.31	27.17
Reflection	SSIM	0.8953	0.6253	0.8303	0.8785	0.8418	0.8022
	PSNR	20.92	13.90	18.50	20.53	19.18	18.26

GIHzürich

Evaluation on Synthetic Data

[1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.
[2] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot. CRRN: Multi-scale guided concurrent reflection removal network. In Proc. CVPR, 2018
[3] X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. In Proc. CVPR, 2018.

ElHzürich

Evaluation on Synthetic Data

[1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.
[2] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot. CRRN: Multi-scale guided concurrent reflection removal network. In Proc. CVPR, 2018
[3] X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. In Proc. CVPR, 2018.

Evaluation on Real-World Data

[1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.

Conclusion

- Polarization conveys both geometric and physical cues of the surrounding environment.
- The encoded rough geometric information in polarization can contribute to 3D reconstruction.
- The polarization is helpful for image reflection separation.

Future Work

- The current physical model for polarization is ideal to some extent, and more complex model should be studied.
- Polarization can be applied to other vision tasks, including image segmentation, image dehazing, etc.

Collaborators

Marc Pollefeys @ETH Zurich

Yasutaka Furukawa @SFU

Ping Tan @SFU

Viktor Larsson @ETH Zurich

Jinwei Gu @SenseTime

Luwei Yang @SFU

Jan Kautz @NVIIDA

Feitong Tan @SFU

Boxin Shi @Peking University

Related work

- [1] Polarimetric Multi-View Stereo. Zhaopeng Cui, Jinwei Gu, Boxin Shi, Ping Tan, and Jan Kautz. CVPR, 2017.
- [2] Polarimetric Dense Monocular SLAM. Luwei Yang*, Feitong Tan*, Ao Li, Zhaopeng Cui, Yasutaka Furukawa, and Ping Tan. CVPR, 2018.
- [3] Polarimetric Relative Pose Estimation. Zhaopeng Cui, Viktor Larsson, and Marc Pollefeys. ICCV, 2019.
- [4] Reflection Separation using a Pair of Unpolarized and Polarized Images. Youwei Lyu*, Zhaopeng Cui*, Si Li, Marc Pollefeys, and Boxin Shi. NeurIPS, 2019.

Thanks

Q\&A

