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Computer Science Department

e 45 tenured or tenure-track faculties

* Plan to grow to 60 faculties in 5 years



Computer Graphics at UT

Chandrajit Bajaj

Etienne Vouga Qixing Huang



Vision group Is growing --- two more
members in the next two years

Kristen Grauman Philipp Krahenbhl



Maps between Sets

X Y




Maps between objects

Dense correspondences between images pixels/mesh vertices

Sparse correspondences between features points/parts/segments



Application in information propagation

Morphing [Zhang et al. 08] Texture transfer [Chen et al. 12]
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Deformation transfer [Sumner and Popovic 04]




Application in information propagation

@ orfariortas @ Ora3/0ri5a
@ orfeiorf29 @ orf20/0r35 @ Orf70/0ri13
@ or2s/0ri40 @ Orf29a/0rtas @ Oris/Ori31

Protein-protein interaction network alignment Nonparametric Scene Parsing
[Kolar et al. 08] [Liu et al. 11]



Application in 3D Reconstruction
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dynamic geometry reconstruction

Multiview Stereo Dynamic geometry reconstruction
[Furukawa and Hernandez 15] [Li etal. 15]



Neural networks are maps

* Approximate any function given sufficient data




Monocular reconstruction

(c) output

Semantic scene completion [Song et al. 17] MarrNet [Wu et al. 17]

Space of images — Space of 3D models



Image Captioning
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Space of images —

an open laptop computer sitting on 1op of a desk
two computers are shown together on a desk

a boy is playing with a baseball bat

Space of natural language descriptions



Map Computation is Difficult



Joint Map Computation
(Map Synchronization)



Ambiguities in assembling pieces
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Resolving ambiguities by looking at
additional pieces
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Resolving ambiguities by looking at
additional pieces
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Matching through intermediate objects
--- map propagation

Blended intrinsic maps
[Kim et al. 11]

object

Composite



Multi-lingual translation

[Johnson et al. 16]

Sparse
paired data

Korean Portuguese

English



Matching through intermediate objects
--- map propagation

Blended intrinsic maps
[Kim et al. 11]

object

Composite



Pair-wise maps usually contain
sufficient information
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Map synchronization problem
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Identify correct maps among a (sparse) network of maps



A natural constraint on maps is that
they should be consistent along cycles

Q. Huang, G. Zhang, L. Gao, S. Hu, A. Bustcher, and L. Guibas. An Optimization Approach for Extracting and Encoding
Consistent Maps in a Shape Collection, SIGGRAPHAsia" 12



A natural constraint on maps is that
they should be consistent along cycles

Composite

Q. Huang, G. Zhang, L. Gao, S. Hu, A. Bustcher, and L. Guibas. An Optimization Approach for Extracting and Encoding
Consistent Maps in a Shape Collection, SIGGRAPHAsia" 12



Literature on utilizing the
cycle-consistency constraint

* Spanning tree optimization [Huber et al. 01, Huang
et al. 06, Cho et al. 08, Crandel et al. 11, Huang et al. 12]

* Sampling inconsistent cycles [zach et al. 10, Nyugen
et al. 11, Zhou et al. 15]



Compressive sensing view of
map synchronization

AN

Cycle-consistency Compressible

Input maps Noisy observations



Map synchronization as
constrained matrix optimization
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Example: permutation synchronization

Objective function: [Huang et al. 13]

e 3 X X

(i.§)€G
Observation graph
Constraints:

X =0 <« cycle-consistency

X*ai-i. — L, I <i:<n
Xi;1=1X/1=1, 1<i<j<n
0< X <1

\ mapping constraint



Robust recovery for maps

Xobservation Xground-truth + Xnoise

Recovery if Insome reduced space

spectral-gap( X ground-truthy = CH XnoiseH

[Huang and Guibas 13, Wang and Singer 13, Bandeira et al. 14, Chen et al. 14,
Zhou et al. 15, Chen and Candes 16, Shen et al. 16, Bajaj et al. 18,....]



Joint Map and Symmetry Synchronization
[Y. Sun, Z. Liang, X. Huang, Q. Huang. ECCV 2018]



Symmetric objects are ubiquitous

[Ranson and Stockley 10]

[André et al. 07]
Daily objects Biological/chemical objects



Multiple plausible
self-maps and pair-wise maps




No separation in the standard
formulation

Xobservatlon — Xground-truth + X noise
( IQ IQ IQ IQ \ ( 1—2 12 12 _IQ \
IQ IQ I2 12 12 _12 .
IQ IQ IQ Cee V.S. IQ _12 12




Symmetry detection first?

 Symmetry detection is difficult, particularly in the presence of
partial observations

Dome of the Rock



Two correlated problems

Symmetry detection Better symmetry detection
improves matching through information aggregation
i \‘ €/ \/ .: ... ..oo
. S S S w&‘ '
RgE RN S . .-

[Ovsjanikov et al. 13]

[Tevs and Huang et al. 14]



Using the product operator - lifting

Q: Z(P®P) e0® oo
Peg oo 0o ®

Linear programming or semidefinite programming relaxations for MAP inference
[Wainwright and Jordan 08, Kumar et al. 09, Huang et el. 14,....]



Properties of lifting

* Proposition: If the orbit size is equal to the
group size, then we can recover G from Q




Low-rank representation

e Define

» - Rm%Xmg — Rz Xmmsa
A _ 4 OSil,jlgml_la
‘F( )ilmz—l—iQ,jlmz—i‘jZ — “limatjistametjas 0 <19 12 < mo—1
_— ’ — *

* Then
F(Q) = Z vec(P) - vec(P)"

Peg

Low-rank



Observation induces a linear constraint

Q12 = Z P12 @ Pio

PioeMqo

J
F(Q12) = Z vec(Pyg)vec(Pra)?t
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F(Q12)vec(Pr2) = ||vec(Py2)||*vec(Pi2)



Low-rank factorization

 Low-rank factorization
Q:; = (Pjo ® Pjo) Qoo(Pio ® Py)
!

\

Qoo

R = Qg (P1o ® Pio, -+ , Pno ® Ppo)

Q=R'R



Low-rank matrix recovery

151111 > IF(@Qig)vec(P) - |VeC(P@'T)||2V€C(P@-Z”)|+A|Q—fTR|.27:
(i,j)€€ ‘

Block-wise L1-norm for robust recovery Low-rank constraint

e Spectral initialization
* Alternating minimization
* Greedy rounding



Stool dataset
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Trash Container Dataset
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Quantitative Evaluations

* Joint map and symmetry synchronization improves symmetry
detection

%Correspondences
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40t

Symmetry Detection (Images)
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20F
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—Syml Input
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Quantitative Evaluations

e Joint map and symmetry synchronization improves mapping

— With respect to the closest map (not correspondence)
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&)
X 20}
006 008 0.1 002 004 006 008 01

Correspondence Error Correspondence Error



Learning Transformation Synchronization
[X. Huang, Z. Liang, X. Zhou, X. Yao, L. Guibas, Q.H., CVPR’ 2019]



Hand-crafted objective function

[Candes et al. 11]

D A F
Ijiliél A« + A||E|1, subject to A+ E = D.

|A|«: nuclear norm, sum of singular values of A;
surrogate for rank(A).

|E|[1: {1-norm, sum of absolute values of elements of E;
surrogate for | E||o.



3D scene reconstruction from depth scans

[Dai et al. 17]

 Similar noise sources

— Scanning noise, frame rate, and symmetry structures



Reweighted least square

synchronization
Rotation: Translation:
minimize Z ’LUZHRle — RH_QF minimize ‘winRijtz' +tij —tj||2
R,€50(3),1<i<n & S J tii<i<n &
(i.)€E (i,j)€E
Solved by the first 3 eigenvectors of a Linear system:
Connection Laplacian
> I ' ’ =L7b
Wqi513 t =]
r < GEN (1) Where
ij —wi; R (4,7) € E b, = — Z w;i; BTt
\ 0 otherwise JEN (@)

Robust recovery under a constant fraction of adversarial noise if

62

€2 4+ 12

wi; = pl|RRY —RP|)  where  plx) =



Network design

r-v(;.-] &

Input Scans

Relative
Poses

|

—_—

!

Weighting
Module

— Weights —

M-

—_—

Synchronization

Module

Synchronized
Poses




Weighting module

Input Scans Distance Maps

KNN | —

Relative pose L (k ) _—m
Connection Laplacian

(k)

Sii —

Status Vector

Eq.(13)

— Elﬂ — sc:oreg0 (Si, S5, Tm)

(k+1)

— Wy,

Output Weight



Qualitative results

Ground Truth RotAvg Geometric Registration Our Approach




Qualitative results

Ground Truth RotAvg Geometric Registration Our Approach




Quantitative results

Baseline Comparison (FastGR)

1.0 A 1.0

>
=
W o8- 0.8
c
[,
D 0.6 1 0.6 1
)
=
EU 0.4 0.4-
> —— GeoReg —— GeoReg
g 027 RotAvg 021 RotAvg
O —— Our Approach —— Our Approach
0.0 0.0 1
0 25 50 75 100 125 150 175 0 1 2 3 4 5
Angular Rotation Error Translation Error

Redwood dataset



Limitations of low-rank approaches

Input Model

; Im X12 Xln
VOLI ||~
<> X1 I
X = "
g : : s Xn—l,n
VOLII | g
PCIII ‘(’ i an cee Xn,n—l Im
Output Seg.

ST

Neural networks

Matrix representations

Undirected maps
Directed maps




Path-Invariant Map Networks

[Z. Zhang, Z. Liang, L. Wu, X. Zhou, Q. H, CVPR 2019’ Oral]



Benefits of Joint of Learning of Neural

Networks

* Leverage additional

training data

English

* Fuse patterns learned
under individual

representations

PCI

PClI

PCIIL

o Utilize unlabeled data

Input Model

Output Seg.

-

Portuguese

VOLI

VOLII




Challenges

 Cannot represent
neural networks as
matrices

* Need to regularization

constraint for directed
maps

PCI

PClI

PCIIL

e Need a concise

representation

Input Model

Output Seg.

-

VOLI

VOLII

b




From cycle-consistency to path-

Invariance
L/

Cycle-consistency Path-invariance

Definition Let Gpan(u,v) collect all paths in G that con-
nect u to v. We define the set of all possible path pairs of G

as
gpair — U {(pa Q)|p9 qc gpath(u? U)}

u,vey

We say F is path-invariant if

fp — fQ7 V(p, Q) < gpair-



Path-invariance basis

Input Input

E PCI VOLI PCI Q\/OLII
Z g )

Input Model Output Output

<>

PCI i Input Input
VOLI ||

PC1 PCIII PCI PCII

PClI

¢
<>

VOLIT | .

PCIIL

Output Output
Output Seg. Input Input PCI

%.\ PCI PCI PCIQ

PCII PCII PCIII

PN

Can induce the path-invariance property of the entire graph



Path-invariance provides a regularization
for training neural networks

utput

VVVVV

Output

lllllll

min Y (&N Y B dp, (), fO())

(i,5)€E / (p,q)eB ' /

Supervised loss Unsupervised loss



Main result

* Theorem: Given a directed graph with n
vertices and m edges, there exists a path-
invariance basis with size at most O(nm)

* Main idea for the proof

— A directed graph is a directed acyclic graph (DAG)
of strongly connected components

— Use a vertex order to construct a path-invariance
basis for DAG



Cycle-basis

[Kavitha et al. 09]

integral

-l open

undirected

polynomial

directed

polynomial




Cycle basis/Cycle-consistency basis/Path-
invariance basis

* Undirected cycle basis generalizes to cycle-
consistency basis

— Size: #tedges - #vertices + #components

* |tis an open question whether other bases
generalize

 The minimum size of a path-invariance basis is
an open problem



Semantic segmentation on ScanNet

Ground Truth 8% Label _3()% Label yl()()% Label _8% Label + 92%Unlabcl

(]
e
[
*
é

PCI PCII PCIII VOLI VOLII

100% Label (Isolated) 84.2 83.3 834 819 8I.5
8% Label (Isolated) 79.2 783 784 787 714
8% Label + 92%Unlabel (Joint) [81.7 81.7 81.4 &81.1 78.7
30% Label (Isolated) 80.8 81.9 &81.2 803 795




Application in learning image flows

Dense Image Ma

3 > .~ ---Congealing
240 7 —RASL

8 § ; - | = CollectionFlow

S 30 R S o7 i _ |=——=DSP

2. | ' | ' ===FlowWeb

0] 20 T —— Ours—Dense

o | — Ours—Undirected
QWO g--=" | —ours

2 ‘ . ‘ . ‘

0.02 0.04 0.06 0.08 0.1
PCK Error

Congealing RASL




Comparisons on computing object
correspondences

Shape Matching (SHRECO7, Clique)  Shape Matching (SHRECO07, Sparse)

80 - : N

= |nput o : = |nput
0 10 == Cosmo17 . 4 19— Cosmo17
8 60 Zhou15 8 60 Zhou15
o ===Huang14 & ===Huang14
3 50 g B, < 50 g
S - ==Rand-Cycle S - ==Rand-Cycle
& 40 ——Fund.-Cycle & 40 ——Fund.-Cycle
L 39 =—Ours L 30— Ours
o S
O 20 (@)
2 S

10 :
002 004 006 008 01 002 004 006 008 0.1
Geodesic Error Geodesic Error

8%hape Matching (SPCoSeg, Clique)  Shape Matching (SPCoSeg, Sprase)
L ETTE TR M _ : | :

= Input ' = |nput
§ 60 = Zhou15 8 60 Zhou15
@ ===Huang14 [} ===Huang14
50
g -=-=-Rand-Cycle g ... Rand-Cycle
a 40 —— Fund.-Cycle a 40| —— Fund.-Cycle
2 30 © 30/ ——0Ours
8 20 8 20
=X X
10 10+,

002 004 006 008 01 002 004 006 008 01
Geodesic Error Geodesic Error



Concluding remarks

* Map synchronization is a powerful tool for computing high-
qguality maps across a data collection

* The interplay between cycle-consistency/path-invariance and
low-rank representations is important

 Many open guestions:
— Path-invariance basis
— Theoretical guarantees of optimizing path-invariant map networks
— Uncertainty quantification
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