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Introduction

Dense correspondence for each pixel between two frames

Input Output
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q Optical flow has a wide range of applications.

Why Optical Flow?

Object TrackingAutonomous Driving

Video Action Recognition

3D Shape Reconstruction



4

History of Optical Flow Estimation
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DC Flow

Xu, Ranftl, Koltun.  Accurate Optical Flow via Direct Cost Volume Processing.  CVPR 2017
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q Advantage: high performance while running at real time.
q Disadvantage: need a large amount of labeled data è difficult to obtain.

CNNs for Optical Flow

FlowNet PWC-Net

Fischer et al. 2015, "FlowNet: Learning Optical 
Flow with Convolutional Networks"

Sun et al. 2018, "PWC-Net: CNNs for Optical Flow 
Using Pyramid, Warping, and Cost Volume"
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q Advantage: high performance while running at real time.
q Disadvantage: need a large amount of labeled data è difficult to obtain.

n Pre-training on synthetic dataset: domain gap.
n Unsupervised learning: performance gap, cannot predict flow of occluded

pixels.

CNNs for Optical Flow

Meister et al. 2018, “UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss"
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Unsupervised Learning for Optical Flow

How to learn optical flow of occluded
pixels in a totally unsupervised way?
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q Unsupervised Learning: detect occlusion and exclude occluded pixels.
Ø The optical flow of non-occluded pixels can be accurately estimated.
Ø How do we fully utilize those reliable non-occluded predictions?
Ø Data Distillation!

Key Observation

Non-
Occluded

Occluded

Liu, King, Lyu, Xu. DDFlow: Learning Optical Flow with Unlabeled Data Distillation. AAAI 2019
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q Teacher model is trained with photometric loss !" for non-occluded pixels.
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q Student model has the same network structure as teacher model.
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q Student model is trained with both !" for non-occluded pixels and !# for
occluded pixels. Only student model is needed during testing.
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q Occlusion estimation: based on the forward-backward consistency prior

q Photometric loss !"

q Loss for occluded pixels !#

q Teacher model: ! = !"
q Student Model: ! = !" + !#

Loss Functions

No hyperparameter !
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q Optical Flow
Ø EPE: average endpoint error between the predicted flow and the ground
truth flow over all pixels.

Ø Fl: percentage of erroneous pixels. A pixel is considered to be correctly
estimated if flow end-point error is < 3 pixels or <5%.

q Occlusion estimation
Ø F-score: the harmonic average of the precision and recall.

Evaluation Metrics
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q DDFlow outperforms all existing unsupervised flow learning methods on all
datasets.

Quantitative Comparisons
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q Our pre-trained model on Flying Chairs even outperforms the finetuned state-
of-the-art unsupervised models on Sintel dataset.

Quantitative Comparisons
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q 28.6 % relative improvement on KITTI 2012, 37.7% relative improvement on
KITTI 2015.

Quantitative Comparisons
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q 28.6 % relative improvement on KITTI 2012, 37.7% relative improvement on
KITTI 2015.

q On KITTI 2012, DDFlow outperforms Flownet 2.0 for ranking metric Fl-noc.

Quantitative Comparisons
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q DDFlow achieves the best occlusion estimation performance on Sintel Clean
and Sintel Final datasets.

q On KITTI dataset, the ground truth occlusion masks only contain pixels
moving out of the image boundary. Under such setting, our method can
achieve comparable performance.

Quantitative Comparisons
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q Sample results on Sintel datasets. The first three rows are from Sintel Clean,
while the last three are from Sintel Final.

Qualitative Comparisons
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q Example results on KITTI datasets. The first three rows are from KITTI 2012,
and the last three are from KITTI 2015.

q Note that on KITTI datasets, the occlusion masks are sparse and only
contain pixels moving out of the image boundary.

Qualitative Comparisons
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q Comparing row 1, 2 and row 3, 4: occlusion handling can improve flow
estimation performance on all datasets.

Quantitative: Ablation Study
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q Comparing row 1, 2 and row 3, 4: occlusion handling can improve flow
estimation performance on all datasets.

q Comparing row 1, 3 and row 2, 4: census transform constantly improve
performance.

Quantitative: Ablation Study
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q Comparing row 1, 2 and row 3, 4: occlusion handling can improve flow
estimation performance on all datasets.

q Comparing row 1, 3 and row 2, 4: census transform constantly improve
performance.

q Comparing row 4, 5: data distillation can greatly improve the performance,
especially for occluded pixels, with EPE-OCC decreases 18.5% on Sintel
Clean, 16.1% on Sintel Final, 58.2% on KITTI 2012 and 42.1% on KITTI
2015.

Quantitative: Ablation Study
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q The top part is the input frame and the bottom part is the corresponding
optical flow estimated by DDFlow.

Video Flow Estimation on Sintel Dataset
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q Code and models available on https://github.com/ppliuboy/DDFlow.

DDFlow code

https://github.com/ppliuboy/DDFlow


What is Next?



Motivation

• Can we completely get rid of synthetic data?
• Can we win Sintel back?

31Liu, King, Lyu, Xu. SelFlow: Self-Supervised Learning of Optical Flow. CVPR 2019



Initially, !" and !# are non-occluded from $% to $%&", !"'
and !#' are their corresponding pixels. NOC-Model can 

accurately estimate the flow of !" and !# using 
photometric loss.  
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We inject random noise to !"#$and let noise cover 
%$ and %&, then %$ and %& become occluded from !" to 
'!"#$. OCC-Model cannot accurately estimate flow of 

%$ and %& using photometric loss.
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We distill reliable flow estimations of !" and !# from 
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Quantitative Results 



Our unsupervised results outperform all existing 
unsupervised results on all datasets by a large margin.



Our unsupervised results even outperform several 
famous fully-supervised methods.



Our fine-tuned models achieve state-of-the-art results 
without using any external labeled data.





Qualitative Results 



Effect of Self-supervision
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Compared with PWC-Net, our fine-tuned model 
estimates optical flow with more accurate details.
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To demonstrate the generalization ability of our model, we further 
show our flow estimation on real-word videos (from the DAVIS 

dataset). 
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Q & A
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Hiring in Vision and Graphics ;)
http://pages.cs.wisc.edu/~jiaxu/


