Learning Optical Flow with Limited Data

Jia Xu (许佳) Tencent Al Lab

2019-03-14

Introduction

Input

Dense correspondence for each pixel between two frames

Why Optical Flow?

□ Optical flow has a wide range of applications.

Autonomous Driving

Object Tracking

3D Shape Reconstruction

Video Action Recognition

History of Optical Flow Estimation

MPI Sintel Dataset About Downloads Results FAQ Contact Results for methods appear here after users upload them and approve them for public display.

Η	orn and Schur	nck	Sun et al.	EpicFlow		DCFlow		DDFlow
		Brox et al.		FIOWINEL	FullFlow		PWC-Net	Selflow
	1981	2004	2010	2015	2016	2017	2018	2019

DC Flow

Input first frame

Input second frame

Pixel-level Feature Embedding with ConvNets

Output dense optical flow

MPI Sintel Dataset About Downloads Results FAQ Contact Signup Login

Final Clean

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+	
GroundTruth [1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Visualize Results
DCFlow [2]	5.119	2.283	28.228	4.665	2.108	1.440	1.052	3.434	29.351	Visualize Results
FlowFieldsCNN [3]	5.363	2.303	30.313	4.718	2.020	1.399	1.032	3.065	32.422	Visualize Results
MR-Flow [4]	5.376	2.818	26.235	5.109	2.395	1.755	0.908	3.443	32.221	Visualize Results
S2F-IF ^[5]	5.417	2.549	28.795	4.745	2.198	1.712	1.157	3.468	31.262	Visualize Results
InterpoNet_ff ^[6]	5.535	2.372	31.296	4.720	2.018	1.532	1.064	3.496	32.633	Vaualize Results
RegionalFF [7]	5.562	2.595	29.741	4.921	2.393	1.639	1.122	3.477	32.625	Vesualize Results
PGM-C ^[8]	5.591	2.672	29.389	4.975	2.340	1.791	1.057	3.421	33.339	Visualize Results
RicFlow ^[9]	5.620	2.765	28.907	5.146	2.366	1.679	1.088	3.364	33.573	Visualize Results
InterpoNet_cpm [10]	5.627	2.594	30.344	4.975	2.213	1.640	1.042	3.575	33.321	Visualize Results
CPM_AUG [11]	5.645	2.737	29.362	4.707	2.150	1.918	1.087	3.306	33.925	Visualize Results
ProbFlowFields [12]	5.707	2.545	31.471	4.730	2.153	1.666	1.126	3.688	33.303	Visualize Results

Xu, Ranftl, Koltun. Accurate Optical Flow via Direct Cost Volume Processing. CVPR 2017

CNNs for Optical Flow

- Advantage: high performance while running at real time.
- □ Disadvantage: need a large amount of labeled data → difficult to obtain.

Fischer et al. 2015, "FlowNet: Learning Optical Flow with Convolutional Networks" Sun et al. 2018, "PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume"

CNNs for Optical Flow

- □ Advantage: high performance while running at real time.
- □ Disadvantage: need a large amount of labeled data → difficult to obtain.
 - Pre-training on synthetic dataset: domain gap.
 - Unsupervised learning: performance gap, cannot predict flow of occluded pixels.

Domains of interest

Meister et al. 2018, "UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss"

Unsupervised Learning for Optical Flow

How to learn optical flow of **occluded** pixels in a totally unsupervised way?

Key Observation

□ Unsupervised Learning: **detect** occlusion and **exclude** occluded pixels.

- The optical flow of non-occluded pixels can be accurately estimated.
- How do we fully utilize those reliable non-occluded predictions?
- Data Distillation!

Liu, King, Lyu, Xu. DDFlow: Learning Optical Flow with Unlabeled Data Distillation. AAAI 2019

Framework

 \Box Teacher model is trained with photometric loss L_p for non-occluded pixels.

Framework

□ Student model has the same network structure as teacher model.

Framework

□ Student model is trained with both L_p for non-occluded pixels and L_o for occluded pixels. Only student model is needed during testing.

Loss Functions

Occlusion estimation: based on the forward-backward consistency prior

$$\begin{cases} |\mathbf{w}_f + \hat{\mathbf{w}}_f|^2 < \alpha_1(|\mathbf{w}_f|^2 + |\hat{\mathbf{w}}_f|^2) + \alpha_2, \\ \mathbf{p} + \mathbf{w}_f(\mathbf{p}) \in \Omega, \end{cases}$$

 \Box Photometric loss L_p

$$L_p = \sum \psi(I_1 - I_2^w) \odot (1 - O_f) / \sum (1 - O_f) + \sum \psi(I_2 - I_1^w) \odot (1 - O_b) / \sum (1 - O_b)$$

 \Box Loss for occluded pixels L_o

$$M_{f} = \operatorname{clip}(\widetilde{O}_{f} - O_{f}^{p}, 0, 1)$$
$$L_{o} = \sum \psi(\mathbf{w}_{f}^{p} - \widetilde{\mathbf{w}}_{f}) \odot M_{f} / \sum M_{f}$$
$$+ \sum \psi(\mathbf{w}_{b}^{p} - \widetilde{\mathbf{w}}_{b}) \odot M_{b} / \sum M_{b}$$

Teacher model: $L = L_p$ Student Model: $L = L_p + L_o$ No hyperparameter !

Evaluation Metrics

- Optical Flow
 - EPE: average endpoint error between the predicted flow and the ground truth flow over all pixels.
 - FI: percentage of erroneous pixels. A pixel is considered to be correctly estimated if flow end-point error is < 3 pixels or <5%.</p>
- Occlusion estimation
 - ➢ F-score: the harmonic average of the precision and recall.

DDFlow outperforms all existing unsupervised flow learning methods on all datasets.

	Method	Chairs	Sintel	Clean	Sintel	Final	K	ITTI 20	012	KITT	TI 2015
		test	train	test	train	test	train	test	Fl-noc	train	Fl-all
	FlowNetS (Dosovitskiy et al. 2015)	2.71	4.50	7.42	5.45	8.43	8.26	_	_	_	-
	FlowNetS+ft (Dosovitskiy et al. 2015)	122	(3.66)	6.96	(4.44)	7.76	7.52	9.1	<u></u>	<u>-22</u>	· ·
se	SpyNet (Ranjan and Black 2017)	2.63	4.12	6.69	5.57	8.43	9.12			0.00	
IZ!	SpyNet+ft (Ranjan and Black 2017)	1000	(3.17)	6.64	(4.32)	8.36	8.25	10.1	12.31%		35.07%
pe	FlowNet2 (Ilg et al. 2017)	1000	2.02	3.96	3.14	6.02	4.09		100	10.06	13 30
Su	FlowNet2+ft (Ilg et al. 2017)	-	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	4.82%	(2.3)	11.48%
	PWC-Net (Sun et al. 2018)	2.00	3.33	8 <u>—</u> 8	4.59	-	4.57	200	<u>100</u> 5	13.20	8. <u>—</u> 8
	PWC-Net+ft (Sun et al. 2018)	—	(1.70)	3.86	(2.21)	5.13	(1.45)	1.7	4.22%	(2.16)	9.60%
	BackToBasic+ft (Jason, Harley, and Derpanis 2016)	5.3	0. 0	00	0 0	—	11.3	9.9		-	00
	DSTFlow+ft (Ren et al. 2017)	5.11	(6.16)	10.41	(6.81)	11.27	10.43	12.4	<u></u>	16.79	39%
	UnFlow-CSS+ft (Meister, Hur, and Roth 2018)	100		12-30	(7.91)	10.22	3.29			8.10	23.30%
Se	OccAwareFlow (Wang et al. 2018)	3.30	5.23	8.02	6.34	9.08	12.95	-	-	21.30	()
<u>Ni</u>	OccAwareFlow+ft-Sintel (Wang et al. 2018)	3.76	(4.03)	7.95	(5.95)	9.15	12.9		-	22.6	—
bei	OccAwareFlow-KITTI (Wang et al. 2018)		7.41	0 	7.92	-	3.55	4.2	-	8.88	31.2%
nsu	MultiFrameOccFlow-Hard+ft (Janai et al. 2018)	9222	(6.05)	9 <u>—</u> 9	(7.09)	_		<u></u>	<u>1000</u>	6.65	2 <u>—</u> 2
U	MultiFrameOccFlow-Soft+ft (Janai et al. 2018)	818	(3.89)	7.23	(5.52)	8.81	2.000	-	1000	6.59	22.94%
	DDFlow	2.97	3.83	-	4.85	s—8	8.27			17.26	
	DDFlow+ft-Sintel	3.46	(2.92)	6.18	(3.98)	7.40	5.14			12.69	-
	DDFlow+ft-KITTI	6.35	6.20	-	7.08		2.35	3.0	4.57%	5.72	14.29%

Our pre-trained model on Flying Chairs even outperforms the finetuned stateof-the-art unsupervised models on Sintel dataset.

	Method	Chairs	Sintel	Clean	Sintel	Final	K	ITTI 20	012	KITT	FI 2015
		test	train	test	train	test	train	test	F1-noc	train	Fl-all
	FlowNetS (Dosovitskiy et al. 2015)	2.71	4.50	7.42	5.45	8.43	8.26	-		_	-
	FlowNetS+ft (Dosovitskiy et al. 2015)	<u></u>	(3.66)	6.96	(4.44)	7.76	7.52	9.1	<u>2000</u> 5	- <u></u>	n <u>—</u> 1
se	SpyNet (Ranjan and Black 2017)	2.63	4.12	6.69	5.57	8.43	9.12			0.00	
<u>S</u>	SpyNet+ft (Ranjan and Black 2017)	-	(3.17)	6.64	(4.32)	8.36	8.25	10.1	12.31%		35.07%
pe	FlowNet2 (Ilg et al. 2017)	100	2.02	3.96	3.14	6.02	4.09		100	10.06	
Su	FlowNet2+ft (Ilg et al. 2017)	-	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	4.82%	(2.3)	11.48%
	PWC-Net (Sun et al. 2018)	2.00	3.33	<u>1</u>	4.59	8 <u>—</u> 3	4.57	2024	<u></u>	13.20	8 <u>—</u> 21
	PWC-Net+ft (Sun et al. 2018)	—	(1.70)	3.86	(2.21)	5.13	(1.45)	1.7	4.22%	(2.16)	9.60%
-	BackToBasic+ft (Jason, Harley, and Derpanis 2016)	5.3	0 0	00		—	11.3	9.9	-	_	0 0
	DSTFlow+ft (Ren et al. 2017)	5.11	(6.16)	10.41	(6.81)	11.27	10.43	12.4	<u>1000</u>	16.79	39%
	UnFlow-CSS+ft (Meister, Hur, and Roth 2018)	1000	10 11	32 3 6	(7.91)	10.22	3.29			8.10	23.30%
Se	OccAwareFlow (Wang et al. 2018)	3.30	5.23	8.02	6.34	9.08	12.95	-	-	21.30	
NI.	OccAwareFlow+ft-Sintel (Wang et al. 2018)	3.76	(4.03)	7.95	(5.95)	9.15	12.9	—	—	22.6	
bei	OccAwareFlow-KITTI (Wang et al. 2018)	-	7.41	() ()	7.92	-	3.55	4.2		8.88	31.2%
nsu	MultiFrameOccFlow-Hard+ft (Janai et al. 2018)		(6.05)	9. <u>—</u> 9	(7.09)				<u></u>	6.65	s==
Ur	MultiFrameOccFlow-Soft+ft (Janai et al. 2018)	578	(3.89)	7.23	(5.52)	8.81	1. 2			6.59	22.94%
1	DDFlow	2.97	3.83	2 	4.85	5 10	8.27	<u></u>	<u></u>	17.26	
	DDFlow+ft-Sintel	3.46	(2.92)	6.18	(3.98)	7.40	5.14			12.69	—
	DDFlow+ft-KITTI	6.35	6.20	-	7.08		2.35	3.0	4.57%	5.72	14.29%

28.6 % relative improvement on KITTI 2012, 37.7% relative improvement on KITTI 2015.

	Method	Chairs	Sintel	Clean	Sintel	Final	k	KITTI 20	12	KITT	FI 2015
		test	train	test	train	test	train	test	Fl-noc	train	Fl-all
	FlowNetS (Dosovitskiy et al. 2015)	2.71	4.50	7.42	5.45	8.43	8.26	_		_	5 1
	FlowNetS+ft (Dosovitskiy et al. 2015)	-222	(3.66)	6.96	(4.44)	7.76	7.52	9.1	<u>8000</u>	5 <u>222</u>	14 <u>—</u> 11
se	SpyNet (Ranjan and Black 2017)	2.63	4.12	6.69	5.57	8.43	9.12				
<u>S</u>	SpyNet+ft (Ranjan and Black 2017)	-	(3.17)	6.64	(4.32)	8.36	8.25	10.1	12.31%		35.07%
pe	FlowNet2 (Ilg et al. 2017)	1000	2.02	3.96	3.14	6.02	4.09		7778	10.06	13 30
Su	FlowNet2+ft (Ilg et al. 2017)	-	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	4.82%	(2.3)	11.48%
	PWC-Net (Sun et al. 2018)	2.00	3.33	8 <u>—</u> 8	4.59	8 <u>—</u> 3	4.57	2004	<u>820</u> 9	13.20	8 <u>—</u> 8
	PWC-Net+ft (Sun et al. 2018)	—	(1.70)	3.86	(2.21)	5.13	(1.45)	1.7	4.22%	(2.16)	9.60%
	BackToBasic+ft (Jason, Harley, and Derpanis 2016)	5.3	0 0	00	() ()	—	11.3	9.9		_	0
	DSTFlow+ft (Ren et al. 2017)	5.11	(6.16)	10.41	(6.81)	11.27	10.43	12.4		16.79	39%
	UnFlow-CSS+ft (Meister, Hur, and Roth 2018)	1000	10 -0 1	19 96	(7.91)	10.22	3.29		1000	8.10	23.30%
Se	OccAwareFlow (Wang et al. 2018)	3.30	5.23	8.02	6.34	9.08	12.95			21.30	
NI.	OccAwareFlow+ft-Sintel (Wang et al. 2018)	3.76	(4.03)	7.95	(5.95)	9.15	12.9			22.6	-
bei	OccAwareFlow-KITTI (Wang et al. 2018)		7.41	0 	7.92		3.55	4.2		8.88	31.2%
nsu	MultiFrameOccFlow-Hard+ft (Janai et al. 2018)	2002	(6.05)	9 <u>—</u> 9	(7.09)		-			6.65	
U	MultiFrameOccFlow-Soft+ft (Janai et al. 2018)	6778	(3.89)	7.23	(5.52)	8.81	1 1		-	6.59	22.94%
	DDFlow	2.97	3.83	2 <u>—</u> 2	4.85	5 <u></u> 8	8.27	<u>041</u>)	<u>1.00</u>	17.26	-
	DDFlow+ft-Sintel	3.46	(2.92)	6.18	(3.98)	7.40	5.14		-	12.69	—
	DDFlow+ft-KITTI	6.35	6.20	5 	7.08		2.35	3.0	4.57%	5.72	14.29%

28.6 % relative improvement on KITTI 2012, 37.7% relative improvement on KITTI 2015.

□ On KITTI 2012, DDFlow outperforms Flownet 2.0 for ranking metric Fl-noc.

	Method	Chairs	Sintel	Clean	Sintel	Final	K	ITTI 2	012	KITT	FI 2015
		test	train	test	train	test	train	test	Fl-noc	train	Fl-all
	FlowNetS (Dosovitskiy et al. 2015)	2.71	4.50	7.42	5.45	8.43	8.26	-		_	-
	FlowNetS+ft (Dosovitskiy et al. 2015)	<u>-222</u>	(3.66)	6.96	(4.44)	7.76	7.52	9.1	<u>1.00</u> 2		
se	SpyNet (Ranjan and Black 2017)	2.63	4.12	6.69	5.57	8.43	9.12			0.00	—
N	SpyNet+ft (Ranjan and Black 2017)	-	(3.17)	6.64	(4.32)	8.36	8.25	10.1	12.31%		35.07%
be	FlowNet2 (Ilg et al. 2017)	1000	2.02	3.96	3.14	6.02	4.09		27.57	10.06	.—
Su	FlowNet2+ft (Ilg et al. 2017)	-	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	4.82%	(2.3)	11.48%
	PWC-Net (Sun et al. 2018)	2.00	3.33	8 <u>—</u> 8	4.59	_	4.57	2022	<u>9900</u> 9	13.20	· <u></u> ·
	PWC-Net+ft (Sun et al. 2018)	-	(1.70)	3.86	(2.21)	5.13	(1.45)	1.7	4.22%	(2.16)	9.60%
	BackToBasic+ft (Jason, Harley, and Derpanis 2016)	5.3	0 0	0 0	0 0	—	11.3	9.9	-	-	
	DSTFlow+ft (Ren et al. 2017)	5.11	(6.16)	10.41	(6.81)	11.27	10.43	12.4	<u></u>	16.79	39%
	UnFlow-CSS+ft (Meister, Hur, and Roth 2018)	1000		12-30	(7.91)	10.22	3.29		Topol,	8.10	23.30%
Se	OccAwareFlow (Wang et al. 2018)	3.30	5.23	8.02	6.34	9.08	12.95	-		21.30	0
Ni	OccAwareFlow+ft-Sintel (Wang et al. 2018)	3.76	(4.03)	7.95	(5.95)	9.15	12.9		100 million 100 million	22.6	—
be	OccAwareFlow-KITTI (Wang et al. 2018)		7.41	())	7.92		3.55	4.2		8.88	31.2%
nsu	MultiFrameOccFlow-Hard+ft (Janai et al. 2018)	2000	(6.05)	9 <u>—</u> 2	(7.09)		_	<u></u>	<u></u>	6.65	2 <u>—</u> 2
U	MultiFrameOccFlow-Soft+ft (Janai et al. 2018)	107120	(3.89)	7.23	(5.52)	8.81	1. 			6.59	22.94%
	DDFlow	2.97	3.83	2 <u>—</u> 2	4.85	5 <u></u> 8	8.27	<u>(1814</u>)	<u>6.000</u>	17.26	2 <u>—</u> 2
	DDFlow+ft-Sintel	3.46	(2.92)	6.18	(3.98)	7.40	5.14		-	12.69	—
	DDFlow+ft-KITTI	6.35	6.20	· —· ·	7.08	—	2.35	3.0	4.57%	5.72	14.29%

- DDFlow achieves the best occlusion estimation performance on Sintel Clean and Sintel Final datasets.
- On KITTI dataset, the ground truth occlusion masks only contain pixels moving out of the image boundary. Under such setting, our method can achieve comparable performance.

Method	Sintel Clean	Sintel Final	KITTI 2012	KITTI 2015
MODOF		0.48	_	_
OccAwareFlow-ft	(0.54)	(0.48)	0.95*	0.88*
MultiFrameOccFlow-Soft+ft	(0.49)	(0.44)	—	0.91 *
Ours	(0.59)	(0.52)	0.94*	0.86^{*}

Sample results on Sintel datasets. The first three rows are from Sintel Clean, while the last three are from Sintel Final.

- Example results on KITTI datasets. The first three rows are from KITTI 2012, and the last three are from KITTI 2015.
- Note that on KITTI datasets, the occlusion masks are sparse and only contain pixels moving out of the image boundary.

Quantitative: Ablation Study

□ Comparing row 1, 2 and row 3, 4: occlusion handling can improve flow estimation performance on all datasets.

Occlusion	Census	Data	Chairs	5	Sintel Cle	an		Sintel Fir	nal	K	ITTI 20	12	K	ITTI 20	15
Handling	Transform	Distillation	ALL	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC
×	X	X	4.06	(5.05)	(2.45)	(38.09)	(7.54)	(4.81)	(42.46)	10.76	3.35	59.86	16.85	6.45	82.64
1	X	X	3.95	(4.45)	(2.16)	(33.48)	(6.56)	(4.12)	(37.83)	6.67	1.94	38.01	12.42	5.67	60.59
X	1	X	3.75	(3.90)	(1.60)	(33.31)	(5.23)	(2.80)	(36.35)	8.66	1.47	56.24	14.04	4.06	77.16
1	1	X	3.24	(3.37)	(1.34)	(29.36)	(4.47)	(2.32)	(31.86)	4.50	1.10	27.04	8.01	3.02	42.66
1	1	1	2.97	(2.92)	(1.27)	(23.92)	(3.98)	(2.21)	(26.74)	2.35	1.02	11.31	5.72	2.73	24.68

Quantitative: Ablation Study

- Comparing row 1, 2 and row 3, 4: occlusion handling can improve flow estimation performance on all datasets.
- □ Comparing row 1, 3 and row 2, 4: census transform constantly improve performance.

Occlusion	Census	Data	Chairs	5	Sintel Cle	an		Sintel Fin	nal	K	ITTI 20	12	K	ITTI 20	15
Handling	Transform	Distillation	ALL	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC
X	×	X	4.06	(5.05)	(2.45)	(38.09)	(7.54)	(4.81)	(42.46)	10.76	3.35	59.86	16.85	6.45	82.64
1	X	X	3.95	(4.45)	(2.16)	(33.48)	(6.56)	(4.12)	(37.83)	6.67	1.94	38.01	12.42	5.67	60.59
X	1	X	3.75	(3.90)	(1.60)	(33.31)	(5.23)	(2.80)	(36.35)	8.66	1.47	56.24	14.04	4.06	77.10
1	1	X	3.24	(3.37)	(1.34)	(29.36)	(4.47)	(2.32)	(31.86)	4.50	1.10	27.04	8.01	3.02	42.66
1	1	1	2.97	(2.92)	(1.27)	(23.92)	(3.98)	(2.21)	(26.74)	2.35	1.02	11.31	5.72	2.73	24.68

Quantitative: Ablation Study

- □ Comparing row 1, 2 and row 3, 4: occlusion handling can improve flow estimation performance on all datasets.
- □ Comparing row 1, 3 and row 2, 4: census transform constantly improve performance.
- Comparing row 4, 5: data distillation can greatly improve the performance, especially for occluded pixels, with EPE-OCC decreases 18.5% on Sintel Clean, 16.1% on Sintel Final, 58.2% on KITTI 2012 and 42.1% on KITTI 2015.

Occlusion	Census	Data	Chairs	5	Sintel Cle	an		Sintel Fin	al	K	ITTI 20	12	K	ITTI 20	15
Handling	Transform	Distillation	ALL	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC
×	×	×	4.06	(5.05)	(2.45)	(38.09)	(7.54)	(4.81)	(42.46)	10.76	3.35	59.86	16.85	6.45	82.64
1	×	×	3.95	(4.45)	(2.16)	(33.48)	(6.56)	(4.12)	(37.83)	6.67	1.94	38.01	12.42	5.67	60.59
×	1	X	3.75	(3.90)	(1.60)	(33.31)	(5.23)	(2.80)	(36.35)	8.66	1.47	56.24	14.04	4.06	77.16
1	1	X	3.24	(3.37)	(1.34)	(29.36)	(4.47)	(2.32)	(31.86)	4.50	1.10	27.04	8.01	3.02	42.66
1	1	1	2.97	(2.92)	(1.27)	(23.92)	(3.98)	(2.21)	(26.74)	2.35	1.02	11.31	5.72	2.73	24.68
11: 11	1	tu t		-0 - 0		0. U			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	n				10	141

Video Flow Estimation on Sintel Dataset

□ The top part is the input frame and the bottom part is the corresponding optical flow estimated by DDFlow.

DDFlow code

□ Code and models available on <u>https://github.com/ppliuboy/DDFlow</u>.

What is Next?

Motivation

- Can we completely get rid of synthetic data?
- Can we win Sintel back?

Initially, p_1 and p_2 are non-occluded from I_t to I_{t+1} , p'_1 and p'_2 are their corresponding pixels. NOC-Model can accurately estimate the flow of p_1 and p_2 using photometric loss.

We inject random noise to I_{t+1} and let noise cover p_1 and p_2 , then p_1 and p_2 become occluded from I_t to \tilde{I}_{t+1} . OCC-Model cannot accurately estimate flow of p_1 and p_2 using photometric loss.

We distill reliable flow estimations of p_1 and p_2 from NOC-Model to guide the flow learning for OCC-Model. The guidance is only employed to pixels that are occluded from I_t to \tilde{I}_{t+1} but non-occluded from I_t to I_{t+1} ,

such as p_1 and p_2 .

Quantitative Results

Our unsupervised results outperform all existing unsupervised results on all datasets by a large margin.

	Method	Sintel	Clean	Sintel	Final	K	ITTI 2	012	KIT	Г I 2015
	Method	train	test	train	test	train	test	test(Fl)	train	test(Fl)
	BackToBasic+ft [19]	-	-	-	-	11.3	9.9	_	-	_
pa	DSTFlow+ft [30]	(6.16)	10.41	(6.81)	11.27	10.43	12.4	-	16.79	39%
vise	UnFlow-CSS [25]	-	—	(7.91)	10.22	3.29	-	-	8.10	23.30%
Jer	OccAwareFlow+ft [39]	(4.03)	7.95	(5.95)	9.15	3.55	4.2	_	8.88	31.2%
Insi	MultiFrameOccFlow-Hard+ft [17]	(6.05)	-	(7.09)	-	-	-	_	6.65	_
Un	MultiFrameOccFlow-Soft+ft [17]	(3.89)	7.23	(5.52)	8.81	-		_	6.59	22.94%
	Ours	(2.82)	6.56	(3.87)	6.57	1.69	2.2	7.68%	4.84	14.19%
-	FlowNetS+ft [9]	(3.66)	6.96	(4.44)	7.76	7.52	9.1	44.49%		-
	FlowNetC+ft [9]	(3.78)	6.85	(5.28)	8.51	8.79	-	-		—
	SpyNet+ft [28]	(3.17)	6.64	(4.32)	8.36	8.25	10.1	20.97%	-	35.07%
	FlowFieldsCNN+ft [2]	-	3.78	-	5.36	-	3.0	13.01%	-	18.68 %
	DCFlow+ft [42]	—	3.54	-	5.12	23 				14.83%
-	FlowNet2+ft [14]	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	-	(2.3)	11.48%
sec	UnFlow-CSS+ft [25]	_	_	-	-	(1.14)	1.7	8.42%	(1.86)	11.11%
IVI	LiteFlowNet+ft-CVPR [13]	(1.64)	4.86	(2.23)	6.09	(1.26)	1.7	-	(2.16)	10.24%
dn	LiteFlowNet+ft-axXiv [13]	(1.35)	4.54	(1.78)	5.38	(1.05)	1.6	7.27%	(1.62)	9.38%
S	PWC-Net+ft-CVPR [36]	(2.02)	4.39	(2.08)	5.04	(1.45)	1.7	8.10%	(2.16)	9.60%
	PWC-Net+ft-axXiv [35]	(1.71)	3.45	(2.34)	4.60	(1.08)	1.5	6.82%	(1.45)	7.90%
	ProFlow+ft [23]	(1.78)	2.82	-	5.02	(1.89)	2.1	7.88%	(5.22)	15.04%
	ContinualFlow+ft [27]		3.34	-	4.52	_		_	-	10.03%
	MFF+ft [29]	-	3.42	-	4.57	·	1.7	7.87%		7.17%
	Ours+ft	(1.68)	3.74	(1.77)	4.26	(0.76)	1.5	6.19%	(1.18)	8.42%

Our unsupervised results even outperform several famous fully-supervised methods.

	Method	Sintel	Clean	Sintel	Final	K	ITTI 2	012	KITT	FI 2015
	Method	train	test	train	test	train	test	test(Fl)	train	test(Fl)
	BackToBasic+ft [19]	-	-	_	-	11.3	9.9	-	_	_
pa	DSTFlow+ft [30]	(6.16)	10.41	(6.81)	11.27	10.43	12.4	-	16.79	39%
viso	UnFlow-CSS [25]		-	(7.91)	10.22	3.29	-	-	8.10	23.30%
per	OccAwareFlow+ft [39]	(4.03)	7.95	(5.95)	9.15	3.55	4.2	_	8.88	31.2%
Insi	MultiFrameOccFlow-Hard+ft [17]	(6.05)		(7.09)	_	-	_	_	6.65	
Un	MultiFrameOccFlow-Soft+ft [17]	(3.89)	7.23	(5.52)	8.81	-		_	6.59	22.94%
	Ours	(2.82)	6.56	(3.87)	6.57	1.69	2.2	7.68%	4.84	14.19%
	FlowNetS+ft [9]	(3.66)	6.96	(4.44)	7.76	7.52	9.1	44.49%		-
	FlowNetC+ft [9]	(3.78)	6.85	(5.28)	8.51	8.79	-	-	-	-
	SpyNet+ft [28]	(3.17)	6.64	(4.32)	8.36	8.25	10.1	20.97%	-	35.07%
	FlowFieldsCNN+ft [2]	—	3.78	-	5.36	-	3.0	13.01%	-	18.68 %
	DCFlow+ft [42]	-	3.54	_	5.12	-	_			14.83%
	FlowNet2+ft [14]	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8		(2.3)	11.48%
ise	UnFlow-CSS+ft [25]	_	—	_	_	(1.14)	1.7	8.42%	(1.86)	11.11%
SIV	LiteFlowNet+ft-CVPR [13]	(1.64)	4.86	(2.23)	6.09	(1.26)	1.7	—	(2.16)	10.24%
dn	LiteFlowNet+ft-axXiv [13]	(1.35)	4.54	(1.78)	5.38	(1.05)	1.6	7.27%	(1.62)	9.38%
S	PWC-Net+ft-CVPR [36]	(2.02)	4.39	(2.08)	5.04	(1.45)	1.7	8.10%	(2.16)	9.60%
	PWC-Net+ft-axXiv [35]	(1.71)	3.45	(2.34)	4.60	(1.08)	1.5	6.82%	(1.45)	7.90%
	ProFlow+ft [23]	(1.78)	2.82	-	5.02	(1.89)	2.1	7.88%	(5.22)	15.04%
	ContinualFlow+ft [27]	—	3.34	-	4.52	2 	1111	-		10.03%
	MFF+ft [29]	-	3.42	-	4.57	_	1.7	7.87%	-	7.17%
	Ours+ft	(1.68)	3.74	(1.77)	4.26	(0.76)	1.5	6.19%	(1.18)	8.42%

Our fine-tuned models achieve state-of-the-art results without using any external labeled data.

	Method	Sintel Clean		Sintel Final		KITTI 2012			KITTI 2015	
	Method	train	test	train	test	train	test	test(Fl)	train	test(Fl)
Unsupervised	BackToBasic+ft [19]	-	-		() ()	11.3	9.9		-	-
	DSTFlow+ft [30]	(6.16)	10.41	(6.81)	11.27	10.43	12.4	_	16.79	39%
	UnFlow-CSS [25]	-	-	(7.91)	10.22	3.29	_	-	8.10	23.30%
	OccAwareFlow+ft [39]	(4.03)	7.95	(5.95)	9.15	3.55	4.2	_	8.88	31.2%
	MultiFrameOccFlow-Hard+ft [17]	(6.05)	-	(7.09)	-	-	_	-	6.65	
	MultiFrameOccFlow-Soft+ft [17]	(3.89)	7.23	(5.52)	8.81	-	1000	_	6.59	22.94%
	Ours	(2.82)	6.56	(3.87)	6.57	1.69	2.2	7.68%	4.84	14.19%
Supervised	FlowNetS+ft [9]	(3.66)	6.96	(4.44)	7.76	7.52	9.1	44.49%		-
	FlowNetC+ft [9]	(3.78)	6.85	(5.28)	8.51	8.79	—	-	-	-
	SpyNet+ft [28]	(3.17)	6.64	(4.32)	8.36	8.25	10.1	20.97%	-	35.07%
	FlowFieldsCNN+ft [2]	—	3.78	-	5.36	-	3.0	13.01%	-	18.68 %
	DCFlow+ft [42]	. 21	3.54	-	5.12	1	_		-	14.83%
	FlowNet2+ft [14]	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	-	(2.3)	11.48%
	UnFlow-CSS+ft [25]	_	-	-	-	(1.14)	1.7	8.42%	(1.86)	11.11%
	LiteFlowNet+ft-CVPR [13]	(1.64)	4.86	(2.23)	6.09	(1.26)	1.7	-	(2.16)	10.24%
	LiteFlowNet+ft-axXiv [13]	(1.35)	4.54	(1.78)	5.38	(1.05)	1.6	7.27%	(1.62)	9.38%
	PWC-Net+ft-CVPR [36]	(2.02)	4.39	(2.08)	5.04	(1.45)	1.7	8.10%	(2.16)	9.60%
	PWC-Net+ft-axXiv [35]	(1.71)	3.45	(2.34)	4.60	(1.08)	1.5	6.82%	(1.45)	7.90%
	ProFlow+ft [23]	(1.78)	2.82	—	5.02	(1.89)	2.1	7.88%	(5.22)	15.04%
	ContinualFlow+ft [27]	-	3.34	-	4.52	_		-		10.03%
	MFF+ft [29]	-	3.42	-	4.57		1.7	7.87%	-	7.17%
	Ours+ft	(1.68)	3.74	(1.77)	4.26	(0.76)	1.5	6.19%	(1.18)	8.42%

Qualitative Results

Effect of Self-supervision

Flow Estimation without Self-supervision

Flow Estimation without Self-supervision

Flow Estimation without Self-supervision

Flow Estimation without Self-supervision

Flow Estimation without Self-supervision

Compared with PWC-Net, our fine-tuned model estimates optical flow with more accurate details.

Flow Estimation using PWC-Net

Flow Estimation using PWC-Net

Flow Estimation using PWC-Net

Flow Estimation using PWC-Net

To demonstrate the generalization ability of our model, we further show our flow estimation on real-word videos (from the DAVIS dataset).

Flow from Our Unsupervised Model

Flow from Our Fine-tuned Model

Flow from Our Unsupervised Model

Flow from Our Fine-tuned Model

Q & A

Hiring in Vision and Graphics ;) http://pages.cs.wisc.edu/~jiaxu/