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Q&A

Which company is the most valuable worldwide?
Apple

What is the most important product of Apple?
iIPhone

What is the most differentiable functionality of a
smart phone today?
Photography (arqguably)



Low-light Imaging

Galaxy S10

IPhone XS




Powerful Zoom




Overview

Image and Video Processing
Learning to See in the Dark
Zoomto Learn, Learnto Zoom
Fast Image and Video Processing

Reflection Removal
Image and Video Synthesis

Photographic Image Synthesis
Semi-parametric Image Synthesis

RGBD Future Video Prediction
Fully Automatic Video Colorization



Image and Video Processing




Learning to See In the Dark

(a) Camera output with 1SO 8,000 (b) Camera output with I1SO 409,600 (¢) Our result from the raw data of (a)

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera 1s < 0.1
lux. The Sony 7S 1l sensor 1s exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the
camera with ISO 409,600. The image suffers from noise and color bias. (¢) Image produced by our convolutional network applied to the
raw sensor data from (a).



L earning to See In the Dark
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A deep learning based Image Signal Processor

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to See in the Dark, CVPR 2018



Dataset

Figure 2. Example images in the SID dataset. Outdoor images
in the top two rows, indoor images in the bottom rows. Long-
exposure reference (ground truth) images are shown in front.
Short-exposure mput images (essentially black) are shown 1n the
back. The illuminance at the camera 1s generally between 0.2 and

-~

5 lux outdoors and between 0.03 and 0.3 lux indoors.



Amplication Ratio

(a) x28 (b) x87 (c) x189 (d) x366

Figure 4. The effect of the amplification factor on a patch from an indoor image in the SID dataset (Sony x100 subset). The amplification
factor 1s provided as an external input to our pipeline, akin to the ISO setting in cameras. Higher amplification factors yield brighter images.
This figure shows the output of our pipeline with different amplification factors.



Results

(a) JPEG 1mmage produced by camera (b) Raw data via traditional pipeline (¢) Our result

Figure 5. (a) An image captured at night by the Fujifilm X-T2 camera with ISO 800, aperture /7.1, and exposure of 1/30 second. The
Illuminance at the camera 1s approximately 1 lux. (b) Processing the raw data by a traditional pipeline does not effectively handle the noise
and color bias 1n the data. (¢) Our result obtained from the same raw data.



Demo

Learning to See in the Dark

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun

CVPR 2018




Results

Sony x300 set  Sony x100 set

Ours > BM3D 02.4% 59.3%
Ours > Burst 85.2% 47 .3%

Table 2. Perceptual experiments were used to compare the pre-
sented pipeline with BM3D and burst denoising. The experiment
1S skewed 1n favor of the baselines, as described in the text. The
presented single-image pipeline still significantly outperforms the
baselines on the challenging x300 set and is on par on the easier
x 100 set.



Zoom to Learn, Learn to Zoom

ESRGAN

Digital Zoom
Data source type

(A) Bicubic and Ground Truth (B) 8-bit RGB (C) Synthetic Sensor (D) Real Sensor



Data Collection
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(B1) Noticeable perspective misalignment (B2) Depth of field misalignment (B3) Resolution alignment ambiguity

Figure 2: Example sequence from SR-RAW and three sources of misalignment in data capturing and pre-processing. The
unavoidable misalignment drives us to propose a new similarity metric to correctly use SR-RAW for training.



Data Collection

(A) Data Capture Setup (B) Example Smartphone Input (C) Example DSLR Target

Figure 2: Smartphone-DSLR data capture and an example data pair.



What not just super-resolution

with GANSs?

Existing super-resolution methods
are trained on downsampled RGB
images that contain little noise

But in 8X digital zoom, noise is
prominent

RGB images are the output of ISP

High frequency is removed by denoising

We train our model to recover
underlying high-frequency details
from noisy input




Contextual Bilateral Loss

CX(P, Q) = N Z 111111 Dpz,qj).
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Contextual Loss
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are spatial coordinates of features p; and ¢g;. respectively,

A novel loss (CoBI) for measuring similarity
of slightly misaligned image pairs



Contextual Bilateral Loss

(A) Bicubic (B) Train with CX (C) Train with CoBi1 (D) Ground Truth



Results
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Figure 5: Our 4x zoom results show better perceptual performance in super-resolving distant objects against baseline methods

that are trained under a synthetic setting and applied to processed RGB images.



Results

R P &

Input Bicubic Synthetic Sensor

Figure 6: The model trained on synthetic sensor data produces artifacts such as jagged edges in “Mario™” and “Poster” and
color aberrations in “Pattern”, while our model trained on real sensor data produces clean and high quality zoomed images.



Results

[nput GT for Red Patch GT for Blue Patch
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Results

ESRGAN Johnson et al. LapSRN

Figure 4 (Cont.): Our 4X zoom results show better perceptual performance in super-resolving distant objects against baseline
methods that are trained under a synthetic setting and applied to processed RGB images.




Going well
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Dehazed image
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But not practical
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Alternative solutions?

Use another method
No state-of-the-art accuracy

Accelerate implementation
Time consuming

Nonlinear Function Approximator
Simple, general, accurate and fast



Real-time performance
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ast Image Processing
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Qifeng Chen, Jia Xu, and Vladlen Koltun. Fast Image Processing with Fully-Convolutional Networks, ICCV 2017
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Fast Image Processing with
Fully-Convolutional Networks

Qifeng Chen* Jia Xu®* Vladlen Koltun

Intel Labs

* Joint first authors



Single Image Reflection Removal

Transmission Reflection Transmission Reflection
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Data Collection

induj

Object of
interest




Method

(a) Input (b) Without Lfeat (¢) Without L.av (d) Without Lexel (e) Complete model

Figure 2: Visual comparisons on the three perceptual loss functions, evaluated on a real-world image. In (b), we replace
Lear With image space L' loss and observed overly-smooth output. (c¢) shows artifacts of color degradation and noticeable
residuals without L,4,. In (d), the lack of L... makes the predicted transmission have undesired reflection residuals. Our
complete model in (e) is able to produce better and cleaner prediction.



Results

Transmission Reflection Transmission Reflection

Ground-truth T Our results




Deep Image and Video Synthesis
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Art by Human Creation & Al




Photographic image synthesis

Input semantic layouts Synthesized images
Qifeng Chen and Vladlen Koltun. Photographic Image Synthesis with Cascaded Refinement Networks. ICCV 2017




Motivation

Computer graphics
Alternative route to
photorealism
Capture photographic
appearance
Fast image synthesis

CARLA
Dosovitskiy et al., CoRL 2017



Motivation

Artificial Intelligence
Visual Imagination




Our approach

[nput layout

Cascaded refinement networks

Perceptual Loss

Our result

Diversity

Isola et al.




Cascaded refinement networks
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Diversity




Comparisons on Cityscapes

Our result Isolaetal. [10] Encoder-decoder




Results on NYU dataset

Semantic layout Our result Isolaetal. [16] Full-resolution network Encoder-decoder

Figure 6. Qualitative comparison on the NYU dataset.



User Study
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User study
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GTA5 and Demo Video

Photographic Image Synthesis with
Cascaded Refinement Networks

Qifeng Chen Vladlen Koltun

ICCV 2017




Semi-parametric Image Synthesis
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Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun Semi-parametric Image Synthesis. CVPR 2018



Image Synthesis
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NYU dataset [Silberman et al. ECCV 2012] ADEZ20K dataset [Zhou et al. 2017]



Prior Work: Parametric Models
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Prior Work: Non-parametric Models

Scene Completion using Millions of Photographs [Hays and Efros 2007]



Our Approach

Forest

Mountain

Grass

External memory



Our Approach

Sky
Mountain
Semantic layout
Grass - nn

External memory



Our Approach
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Our Approach

=
Stage 2: Image
Synthesis
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SIMS: Canvas Generation

Semantic

Car

External memory

Building



SIMS: Canvas Generation

Building Car

External memory Retrieved segments



SIMS: Canvas Generation
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External memory Retrieved segments Transformed
segments
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SIMS: Canvas Generation
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SIMS: Image Synthesis
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SIMS: Image Synthesis

Convolution Pooling Upsampling
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Results



Input layout
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Semantic layout
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CRN [Chen and Koltun 2017]



Our result
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Image Statistics

Mean Power Spectrum
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Pix2pix [Isola et al. 2017] Real images



Image Statistics
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Perceptual Experiments

SIMS > 94.2% 98.1% 95.7% 94.9% 87.6% 94.1%
Pix2pix
SIMS >CRN  93.9% 74.1% 84.5% 89.1% 88.9% 86.1%
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Input layout




Future Prediction
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Video Prediction

3D Motion Decomposition for RGBD
Future Dynamic Scene Synthesis

Paper ID: 3727




3D Motion Decomposition for RGBD

Future Dynamic Scene Synthesis

(b) Ego-motion prediction
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Figure 1: Motion forecasting with decomposition and composition. The input includes images ([;—1, I;), depth maps
D, _+.D,), and semantic maps (5;_1..5;). (a) The motion decomposition module decomposes motion into ego motion
t—11 L t—1s“t
R|T|;_1 + and moving object motion M;_4 +. (b) The ego-motion prediction network and (c) the foreeround motion predic-
t—1.t g t—1.t & &
tion network generate future ego-motion [R|T]; ;+1 and foreground motion M; ;11 respectively. (d) The motion composition
module composes a predicted motion field and a new 3D point cloud F,,;. F;yq is then projected to a 2D image plane.
M; 1+ and My ;.4 are color coded where R, (G, B channels represent movement along z, y, z directions.



3D Motion Decomposition for RGBD

Future Dynamic Scene Synthesis
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Figure 2: Refinement network. Taking as input the color images (I;_1, I+, It 1), depth maps (D;_q, Dy, D¢ 1), and semantic
maps (S¢—1, St, St+1), the refinement network synthesizes image [¢+1, depth map D¢+ and semantic map S+ by refining
the projected image [;+1, depth D11 and S¢4.



Results
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Figure 3: Visualization of different methods on next-frame prediction on the KITTI dataset. Input images are at time £. In
the second row, the image 1s produced by MCNet [ '] and depth map 1s produced by PredNet |
map 1s from S28S [ ] 5].

| while the segmentation



Results

Our (Image) GT (Image) Our (Depth) GT (Depth)

Figure 6: Visualization of our results on the Driving dataset for next frame prediction. “GT" stands for ground truth.




Results

Flow Depth Image Seg
EPE || MAE | IMAE [ |PSNR 1 SSIM t|loU 7

S2S5 [15] - - - - - 37.31
PredNet [ 1 3]| - 3.71 5.72 | 12.37  0.35 -
Copy [1.88 ] 3.25 5.38 12.36 0.36 |31.85
Warp [1.51| 3.32  5.67 | 1248  0.35 |32.67
Pred2D 8.63 | 392 777 | 1241 0.37 |37.33
Pred3D |10.56| 3.09 538 | 11.99 0.38 |31.87

Ours 557 263 417 | 13.05 041 |41.70

Table 2: Qualitative results of predicting five future frames.
T means the higher the better. | means the lower the better.
“-" means invalid field.



Video Colorization

Fully Automatic Video Colorization with
Selt-Regularization and Diversity

Chenyang Lei Qifeng Chen
CVPR 2019




Fully Automatic Video Colorization

with Self Reqgularization and Diversity
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versity

Output 2

Frame 1 Frame 2 Frame 3 Frame 4

Figure 3. Four frames of three different videos colorized by our approach with diversity. Our approach is able to colorize videos in different
ways. In general, different videos exhibit different global styles.




Results

Preference rate

Comparison DAVIS  Videvo

Ours > Zhang et al.| ]|+ BTC [!5] 80.0% 88.8%

Ours > hizukaetal. | |+ BTC|[!5] 712.8% 63.3%

Table 1. The results of perceptual user study. Both baselines are
enhanced with temporal consistency by BTC [ | ). Our model con-
sistently outperforms both state-of-the-art colorization methods by

Zhang et al. [ "] and lizuka et al. [ ! ].

Preference rate

Comparison DAVIS
Ours > Ours without self-reg. 67.9%
Ours > Ours without diversity 61.5%

Table 2. The results of the ablation study of comparisons between
our full model and ablated models. The evaluation 1s performed
by perceptual user study with 15 participants. The results indicate
that self-regularization and diversity are key components in our
model to achieve state-of-the-art performance in fully automatic
video colonzation.
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