New Perspectives for Processing and Synthesizing Images and Videos

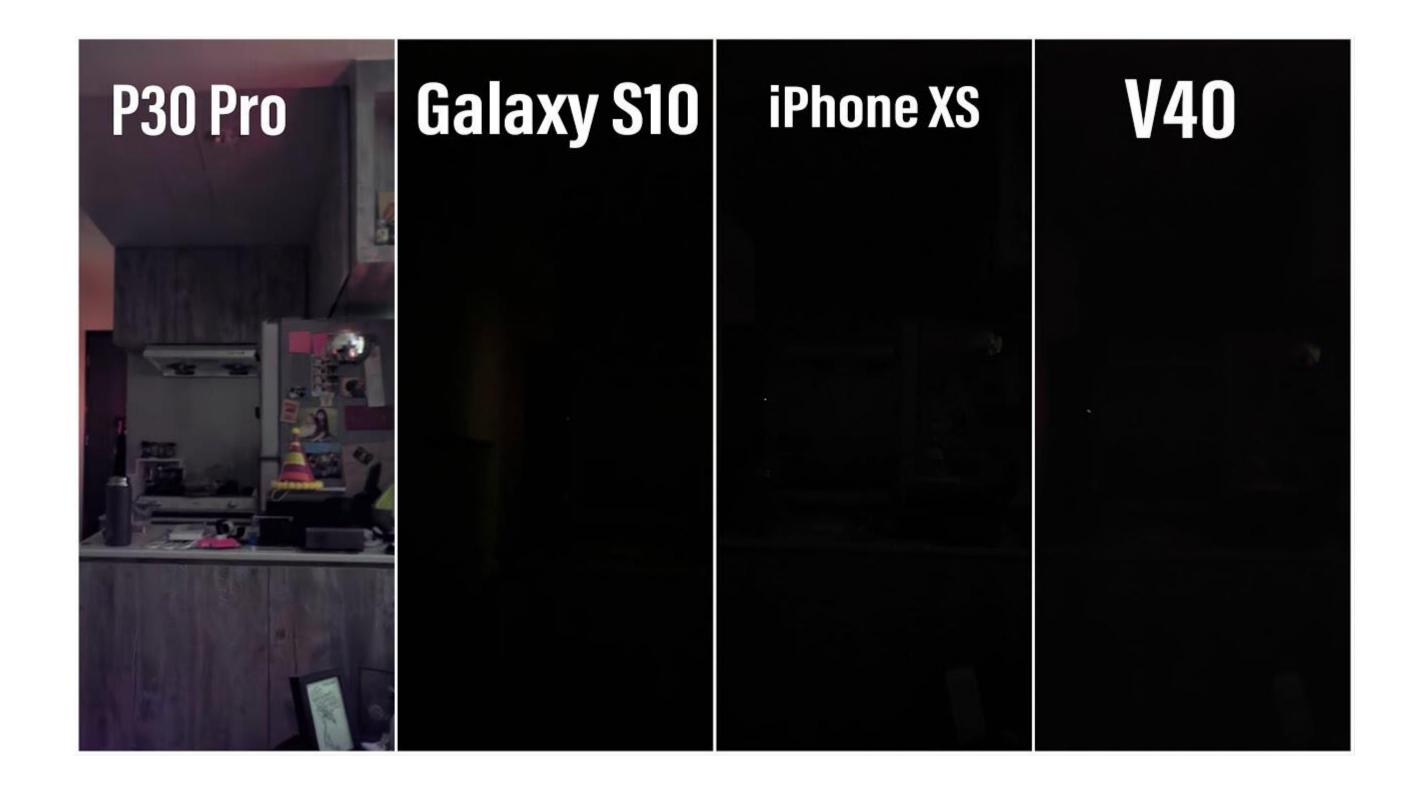
Qifeng Chen Assistant Professor, HKUST

Which company is the most valuable worldwide? Apple

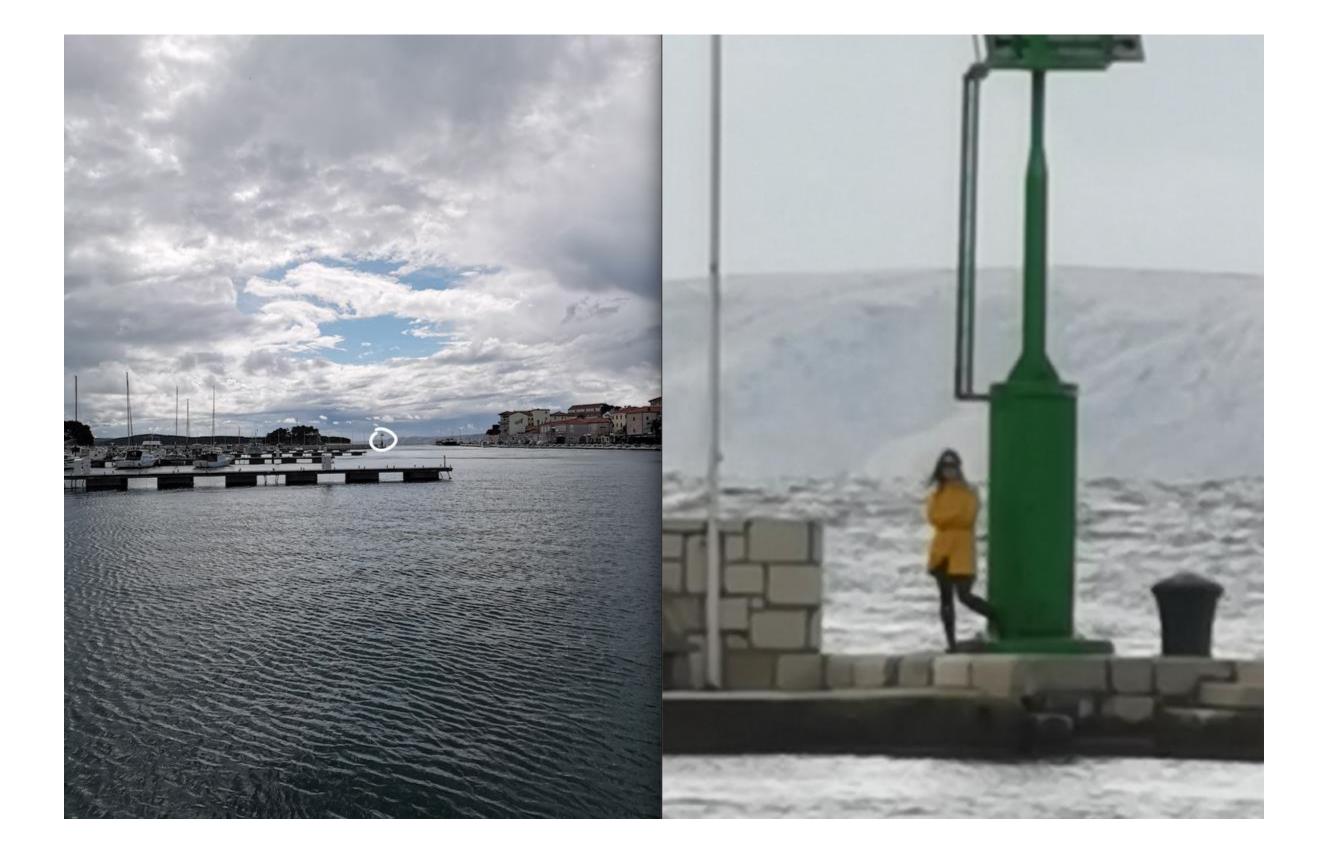
What is the most important product of Apple? iPhone

What is the most differentiable functionality of a smart phone today? Photography (arguably)

Low-light Imaging



Powerful Zoom



Overview

Image and Video Processing Learning to See in the Dark Zoom to Learn, Learn to Zoom Fast Image and Video Processing Reflection Removal Image and Video Synthesis Photographic Image Synthesis Semi-parametric Image Synthesis RGBD Future Video Prediction Fully Automatic Video Colorization

Image and Video Processing

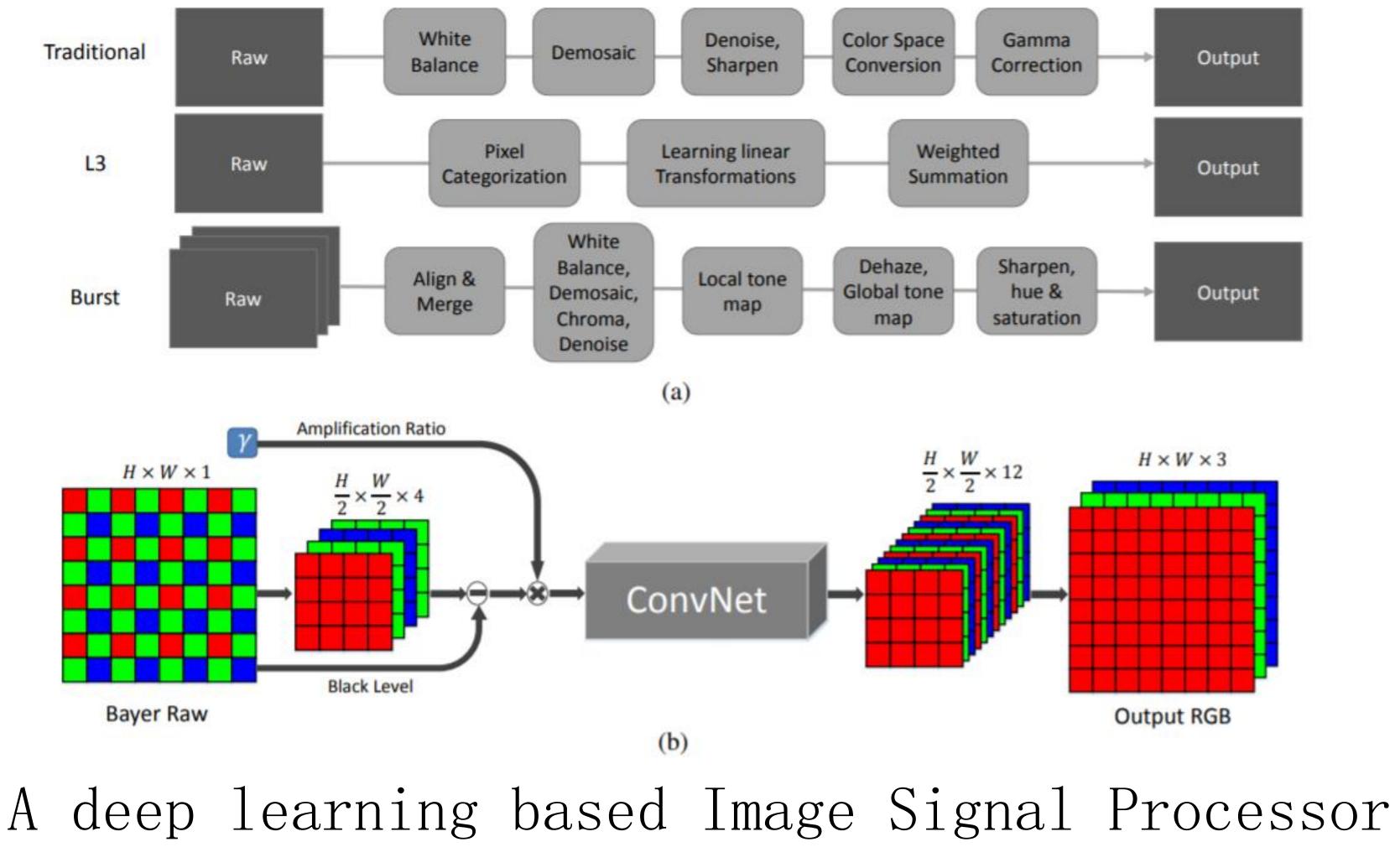
Learning to See in the Dark

(a) Camera output with ISO 8,000

(c) Our result from the raw data of (a) (b) Camera output with ISO 409,600

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1lux. The Sony α 7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the camera with ISO 409,600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the raw sensor data from (a).

Learning to See in the Dark



Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to See in the Dark, CVPR 2018

Dataset

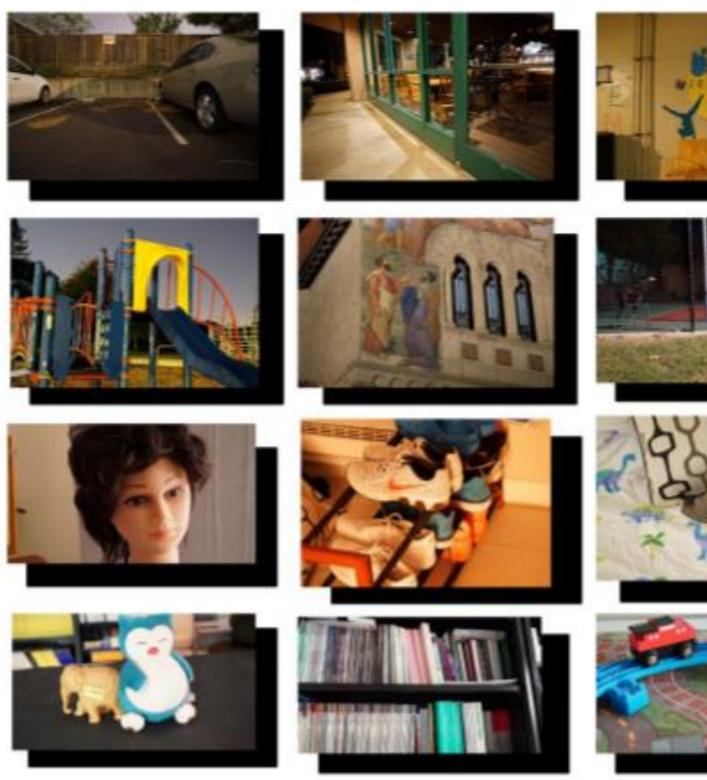


Figure 2. Example images in the SID dataset. Outdoor images in the top two rows, indoor images in the bottom rows. Longexposure reference (ground truth) images are shown in front. Short-exposure input images (essentially black) are shown in the back. The illuminance at the camera is generally between 0.2 and 5 lux outdoors and between 0.03 and 0.3 lux indoors.

Amplication Ratio

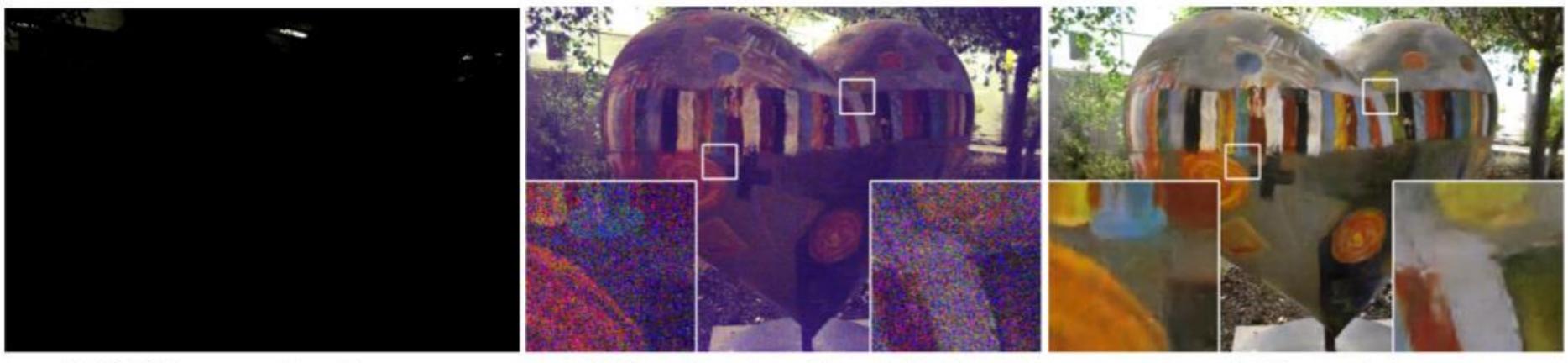
(a) x28

(b) x87

(c) x189

Figure 4. The effect of the amplification factor on a patch from an indoor image in the SID dataset (Sony x100 subset). The amplification factor is provided as an external input to our pipeline, akin to the ISO setting in cameras. Higher amplification factors yield brighter images. This figure shows the output of our pipeline with different amplification factors.

(d) x366



(a) JPEG image produced by camera

(b) Raw data via traditional pipeline

Figure 5. (a) An image captured at night by the Fujifilm X-T2 camera with ISO 800, aperture f/7.1, and exposure of 1/30 second. The illuminance at the camera is approximately 1 lux. (b) Processing the raw data by a traditional pipeline does not effectively handle the noise and color bias in the data. (c) Our result obtained from the same raw data.

(c) Our result

Learning to See in the Dark

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun

CVPR 2018

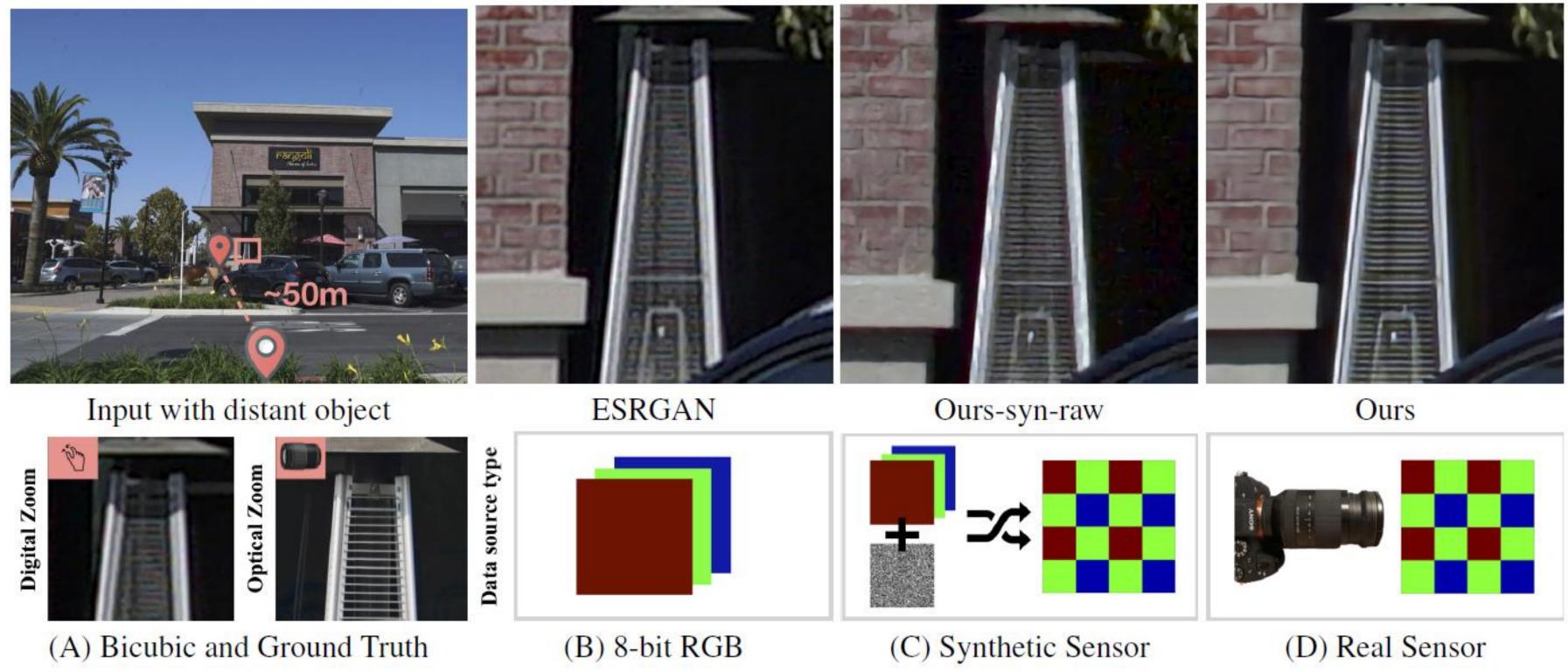
	Sony x300 set	Sony
Ours > BM3D	92.4%	5
Ours > Burst	85.2%	4

Table 2. Perceptual experiments were used to compare the presented pipeline with BM3D and burst denoising. The experiment is skewed in favor of the baselines, as described in the text. The presented single-image pipeline still significantly outperforms the baselines on the challenging x300 set and is on par on the easier x100 set.

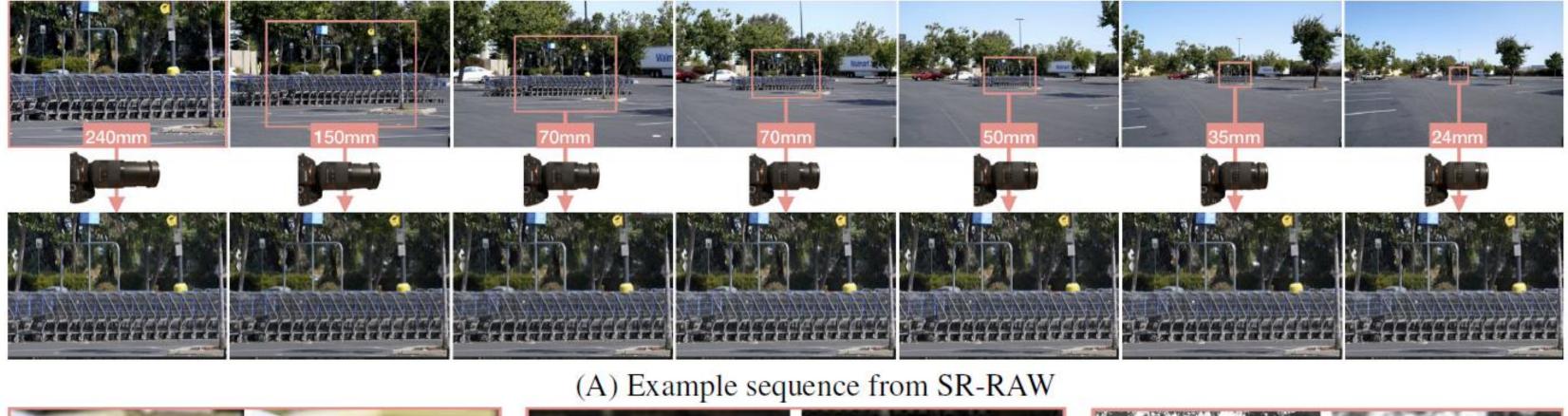
y x100 set

59.3% 47.3%

Zoom to Learn, Learn to Zoom



Data Collection

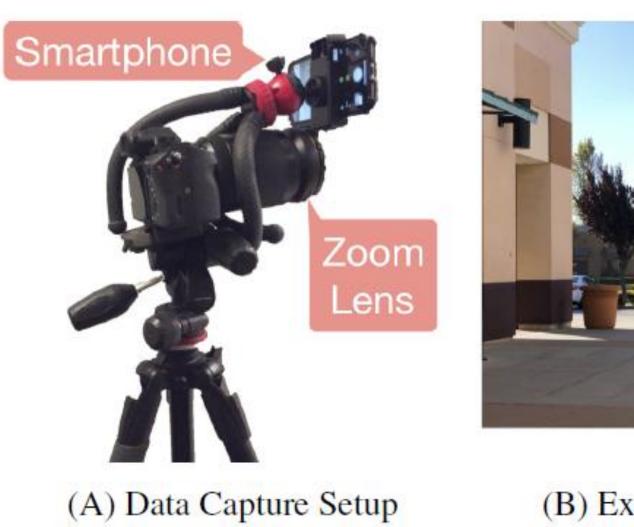


(B1) Noticeable perspective misalignment

(B2) Depth of field misalignment (B3) Resolution alignment ambiguity

Figure 2: Example sequence from SR-RAW and three sources of misalignment in data capturing and pre-processing. The unavoidable misalignment drives us to propose a new similarity metric to correctly use SR-RAW for training.

Data Collection



(B) Example Smartphone Input

Figure 2: Smartphone-DSLR data capture and an example data pair.

(C) Example DSLR Target

What not just super-resolution with GANs?

Existing super-resolution methods are trained on downsampled RGB images that contain little noise But in 8X digital zoom, noise is prominent RGB images are the output of ISP High frequency is removed by denoising We train our model to recover underlying high-frequency details from noisy input

Contextual Bilateral Loss

$$CX(P,Q) = \frac{1}{N} \sum_{i=1,...,M}^{N} \min_{j=1,...,M} (M_{ij})$$
Contextual Loss

$$\operatorname{CoBi}(P,Q) = \frac{1}{N} \sum_{i=1,\dots,M}^{N} \min_{j=1,\dots,M} (\mathbb{D}_{p_i,q_j})$$

where $\mathbb{D}'_{p_i,q_j} = \|(x_i, y_i), (x_j, y_j)\|_2$. $(x_i, y_i), (x_j, y_j)$ are spatial coordinates of features p_i and q_j , respectively,

A novel loss (CoBi) for measuring similarity of slightly misaligned image pairs

 $(\mathbb{D}_{p_i,q_i}).$

 $+ w_s \mathbb{D}'_{p_i,q_i}), \quad (2)$

Contextual Bilateral Loss

(A) Bicubic

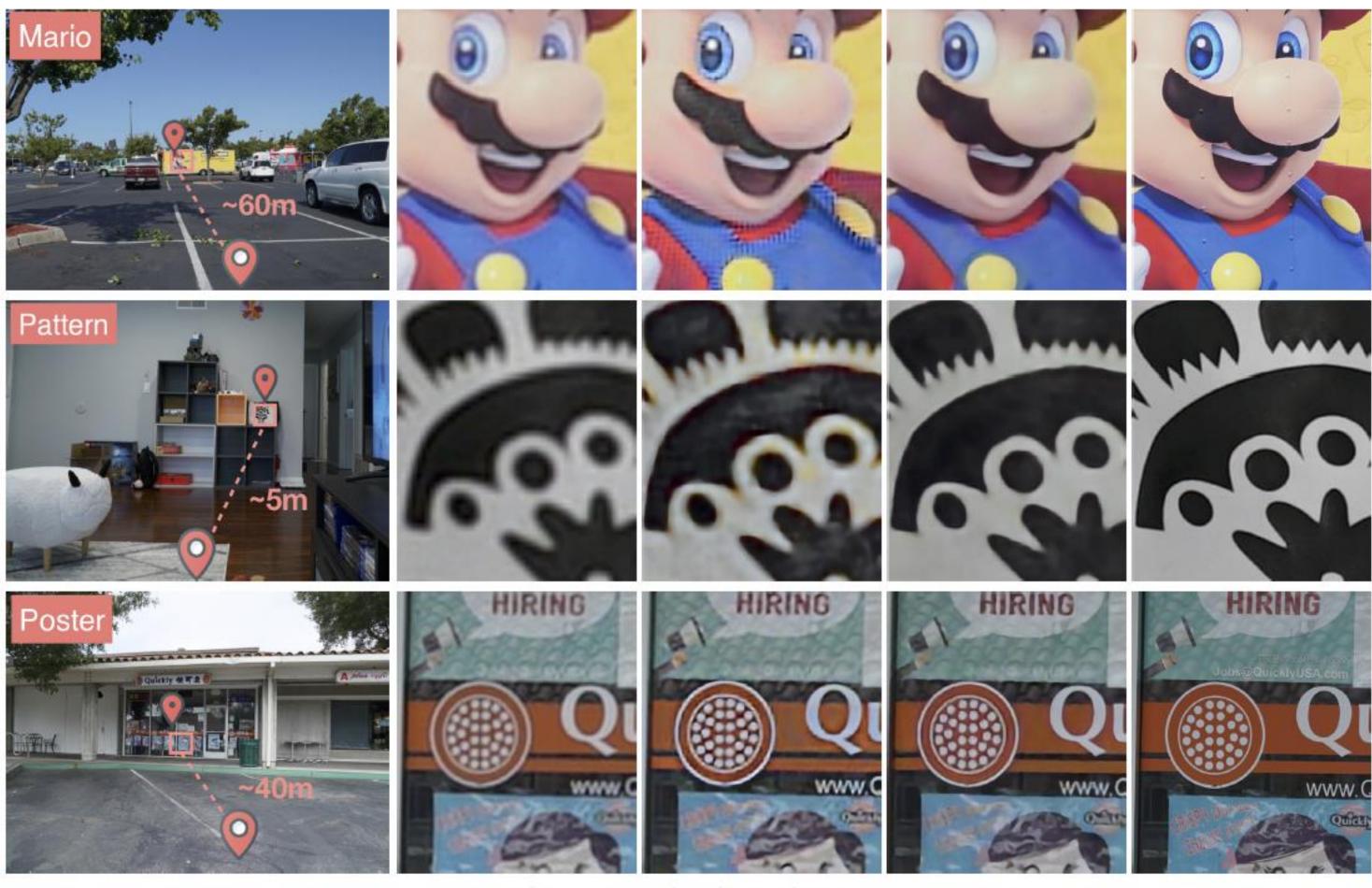
(B) Train with CX

(C) Train with CoBi

(D) Ground Truth

Figure 5: Our 4x zoom results show better perceptual performance in super-resolving distant objects against baseline methods that are trained under a synthetic setting and applied to processed RGB images.

LapSRN [17]



Input

Bicubic

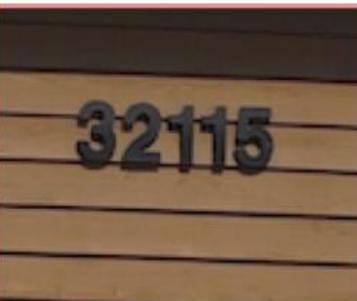
Synthetic Sensor

Figure 6: The model trained on synthetic sensor data produces artifacts such as jagged edges in "Mario" and "Poster" and color aberrations in "Pattern", while our model trained on real sensor data produces clean and high quality zoomed images.

Ours

GT

Input



GT for Red Patch

GT for Blue Patch

ESRGAN

Johnson et al.

LapSRN

ESRGAN

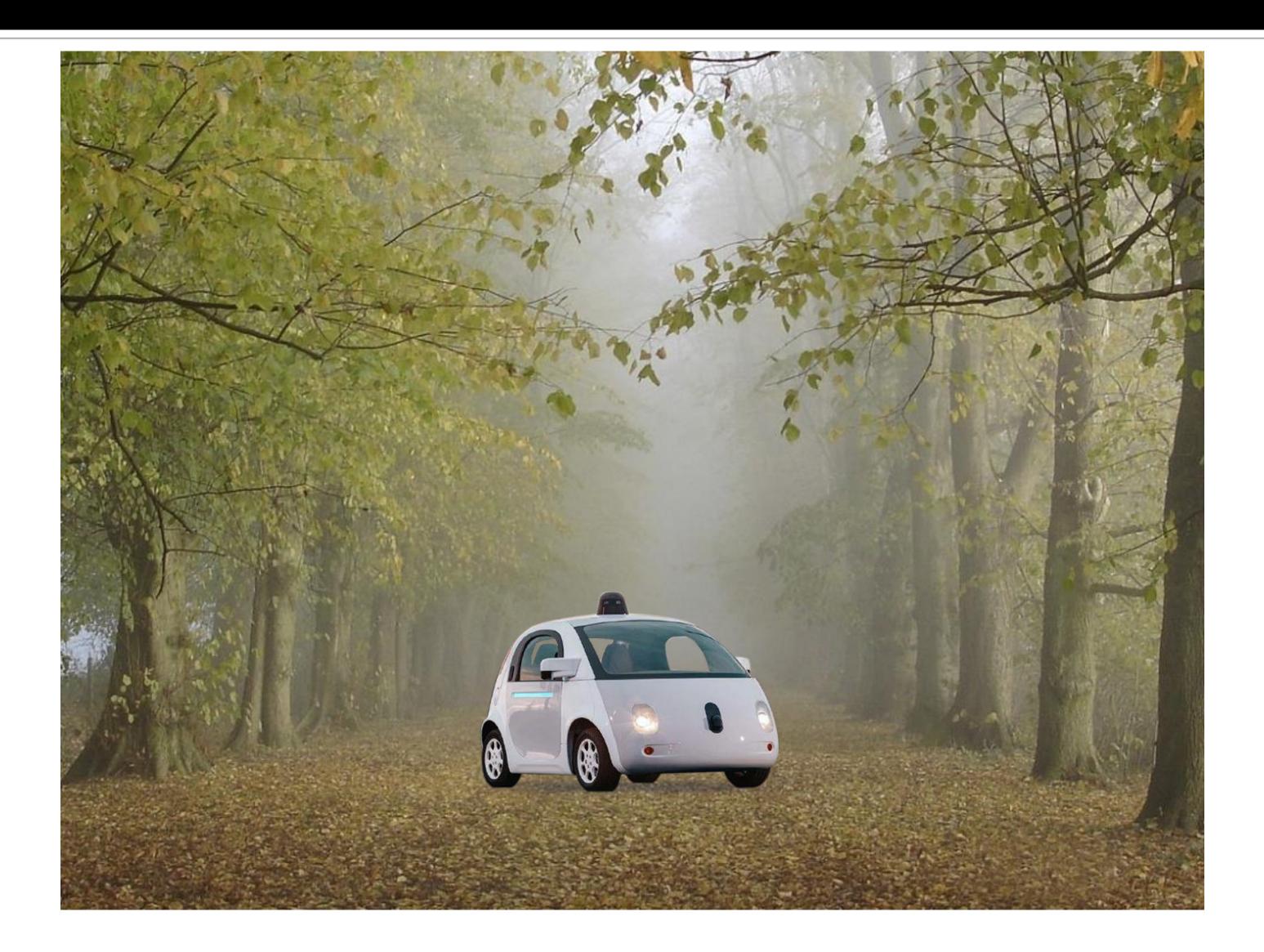
Johnson et al.

LapSRN

Figure 4 (Cont.): Our 4X zoom results show better perceptual performance in super-resolving distant objects against baseline methods that are trained under a synthetic setting and applied to processed RGB images.

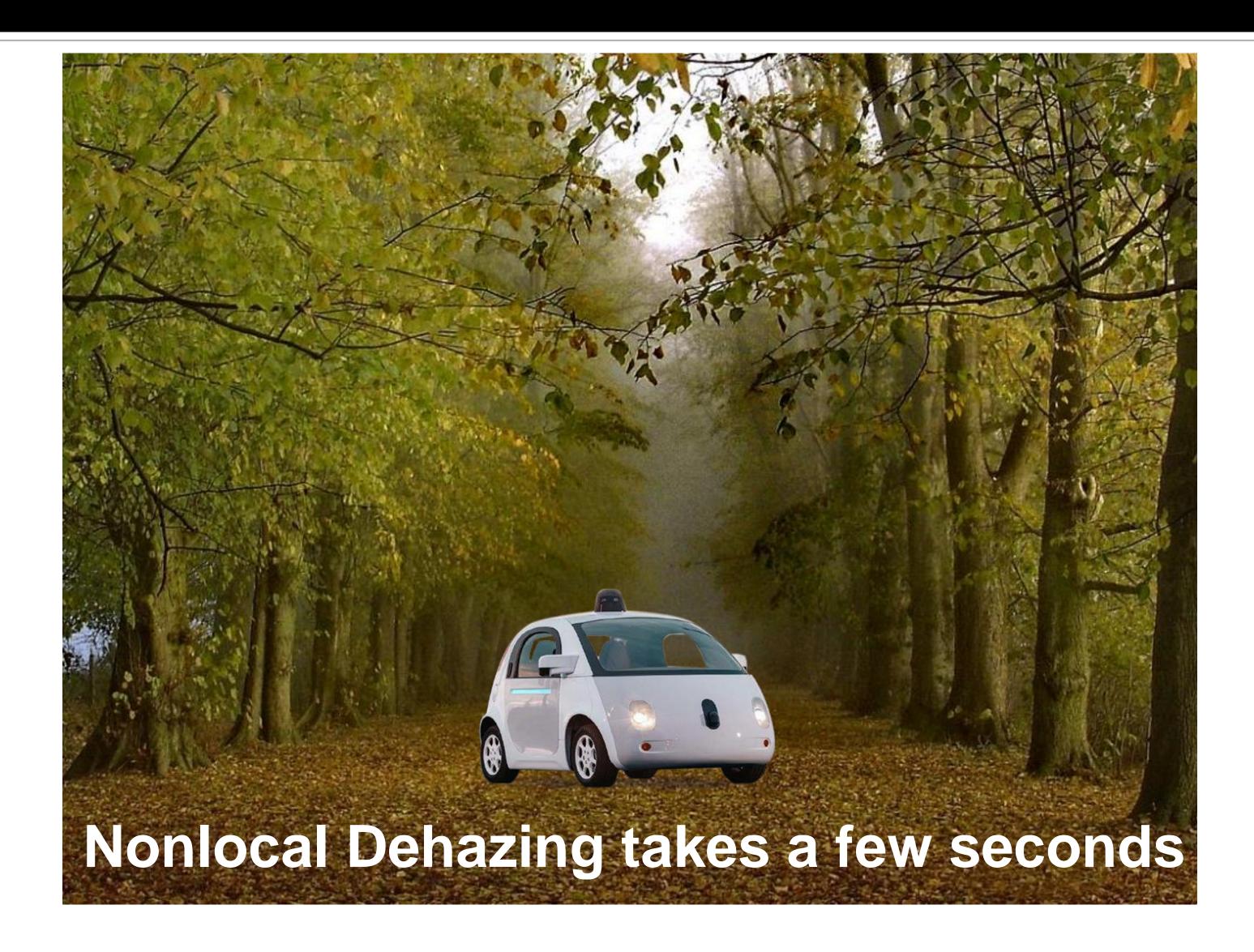
Ours

Going well



Dehazed image

But not practical



Alternative solutions?

Use another method No state-of-the-art accuracy

Accelerate implementation Time consuming

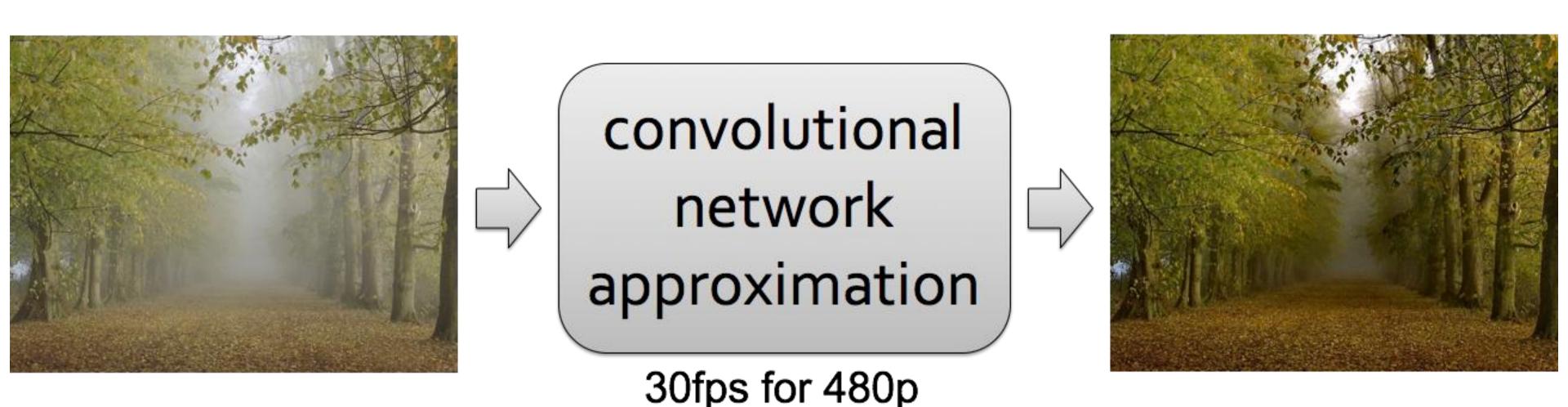
Nonlinear Function Approximator Simple, general, accurate and fast

Real-time performance

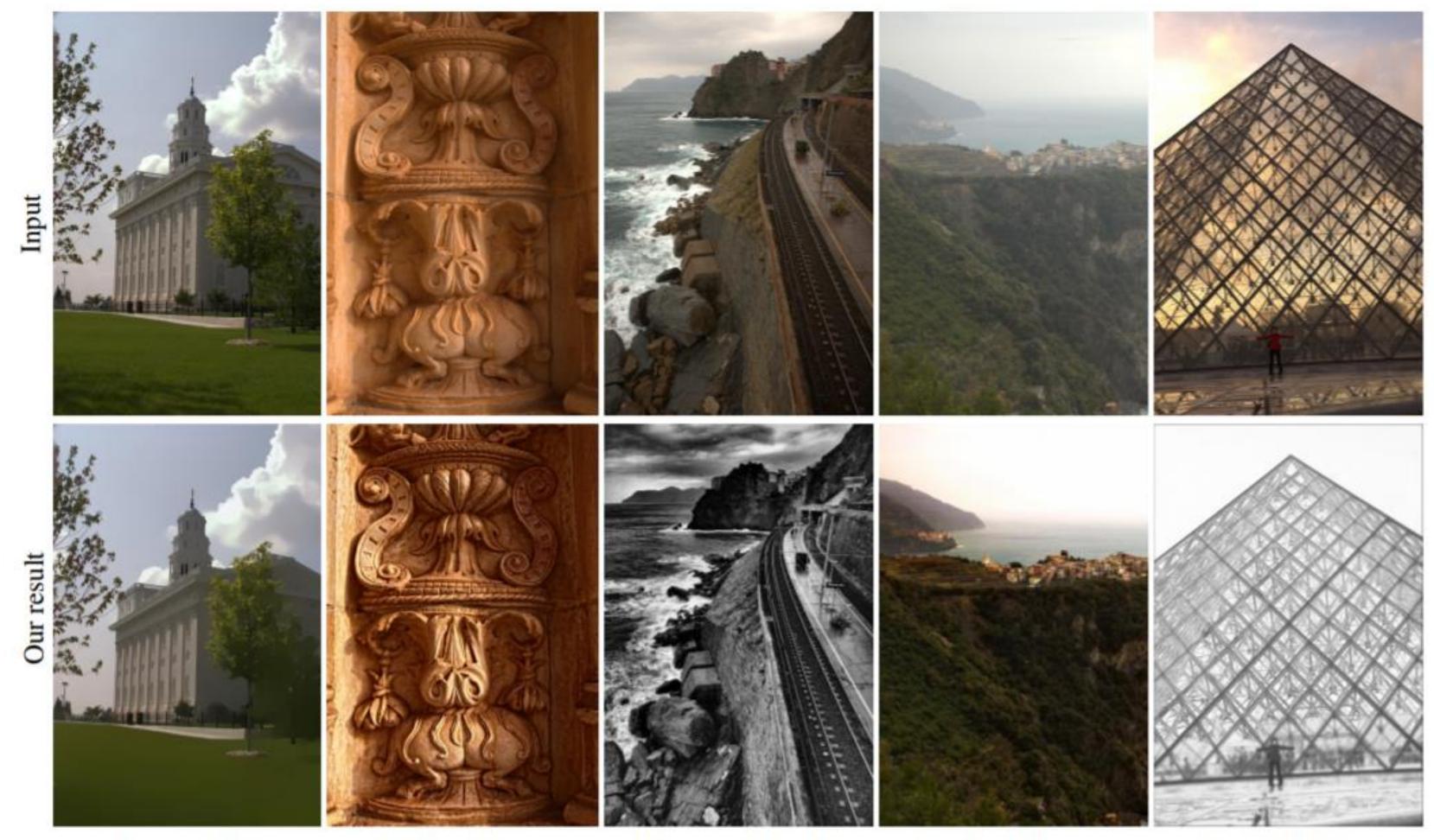


Fast Image Processing

seconds or minutes



Qifeng Chen, Jia Xu, and Vladlen Koltun. Fast Image Processing with Fully-Convolutional Networks, ICCV 2017



 L_0 smoothing

Multiscale tone

Photographic style

Nonlocal dehazing

Pencil drawing

Demo

Fast Image Processing with Fully-Convolutional Networks

Qifeng Chen* Jia Xu* Vladlen Koltun

Intel Labs

* Joint first authors

Single Image Reflection Removal

Input

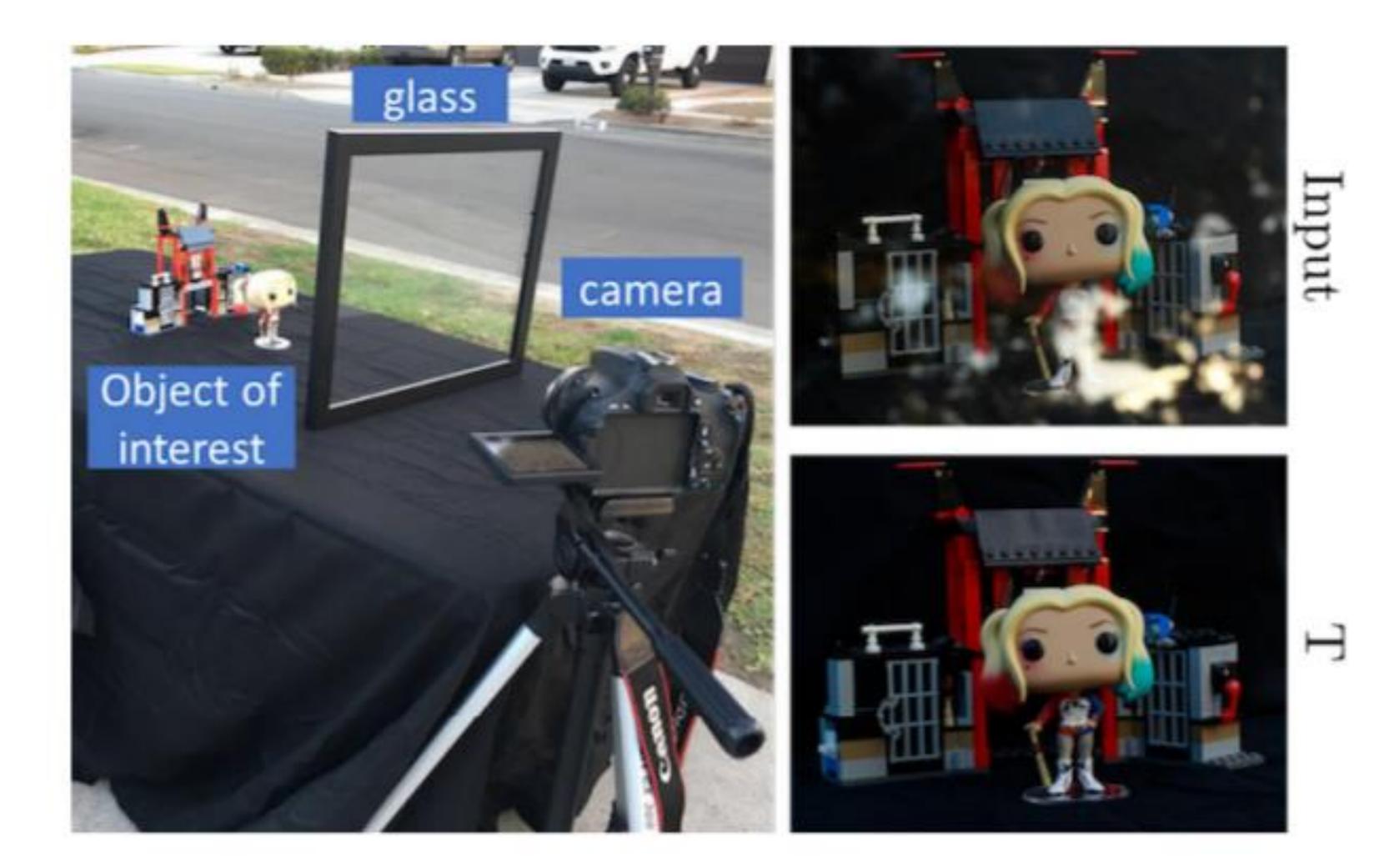
CEILNet [5]

Transmission

Reflection

Our results

Data Collection



Method

(a) Input

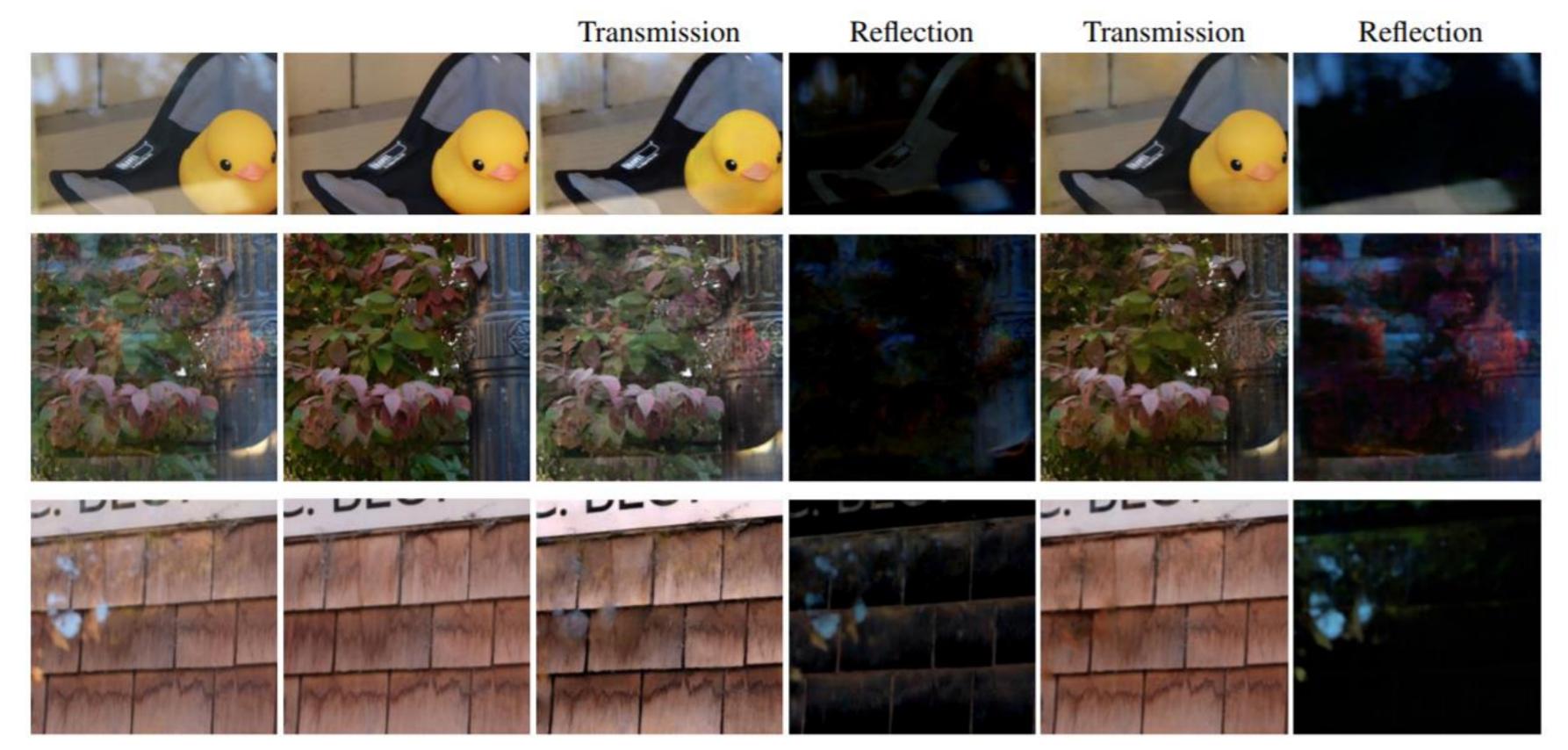
(b) Without L_{feat}

(c) Without L_{adv}

Figure 2: Visual comparisons on the three perceptual loss functions, evaluated on a real-world image. In (b), we replace L_{feat} with image space L^1 loss and observed overly-smooth output. (c) shows artifacts of color degradation and noticeable residuals without L_{adv} . In (d), the lack of L_{excl} makes the predicted transmission have undesired reflection residuals. Our complete model in (e) is able to produce better and cleaner prediction.

(d) Without L_{excl}

(e) Complete model



Input

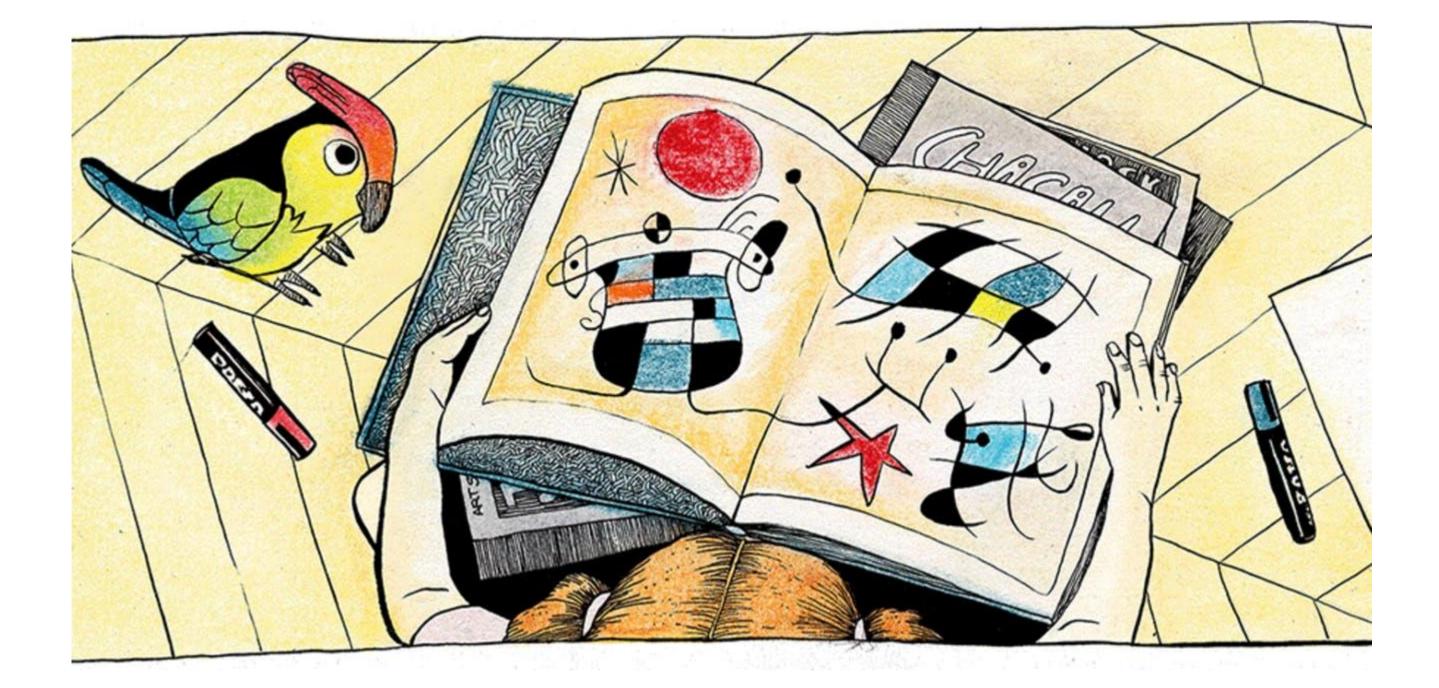
Ground-truth T

CEILNet [5]

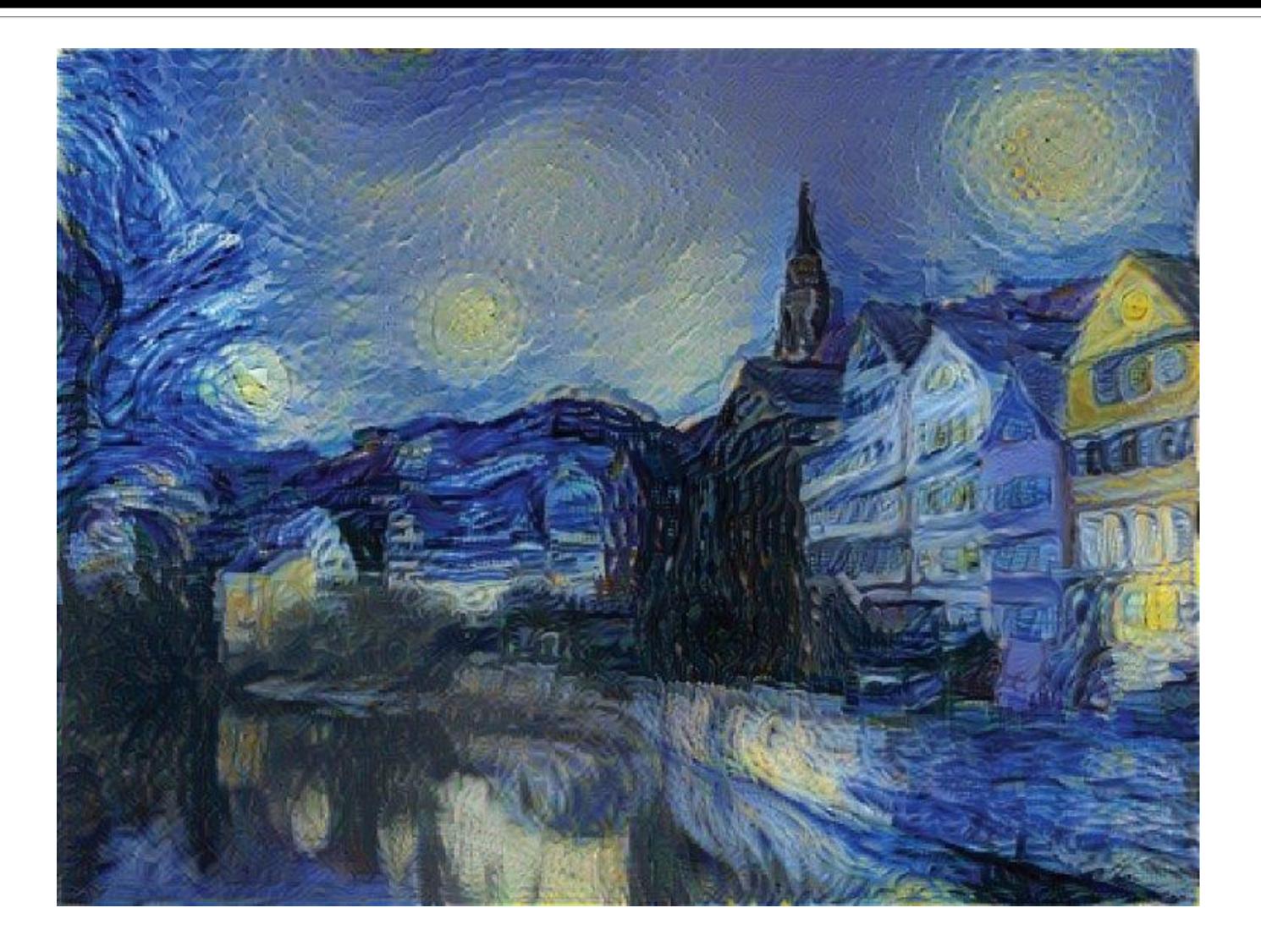
Our results

Deep Image and Video Synthesis

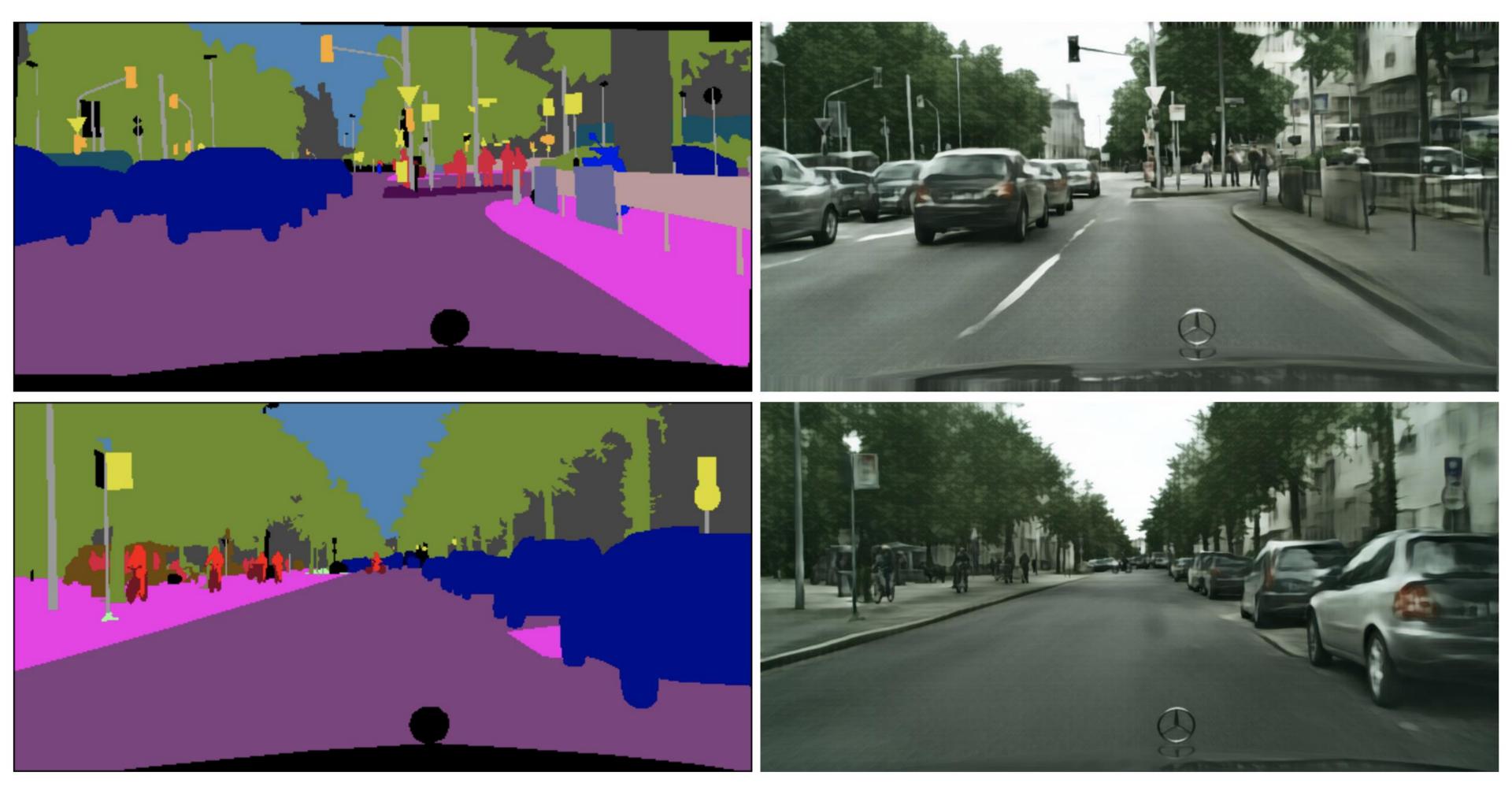
Art by Human Creation



Art by Human Creation & Al



Photographic image synthesis



Input semantic layouts

Qifeng Chen and Vladlen Koltun. Photographic Image Synthesis with Cascaded Refinement Networks. ICCV 2017

Synthesized images with Cascaded Refinement Networks. ICCV 2017

Motivation

Computer graphics

- Alternative route to photorealism
- Capture photographic appearance
- Fast image synthesis

CARLA Dosovitskiy et al., CoRL 2017

Motivation

Artificial IntelligenceVisual Imagination

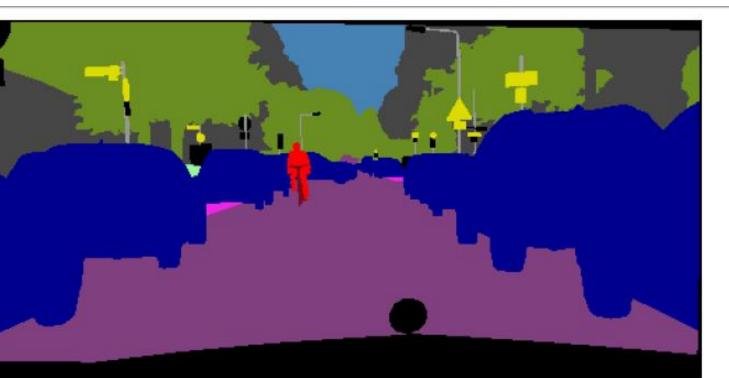
Cascaded refinement networks

- Perceptual Loss
- Diversity

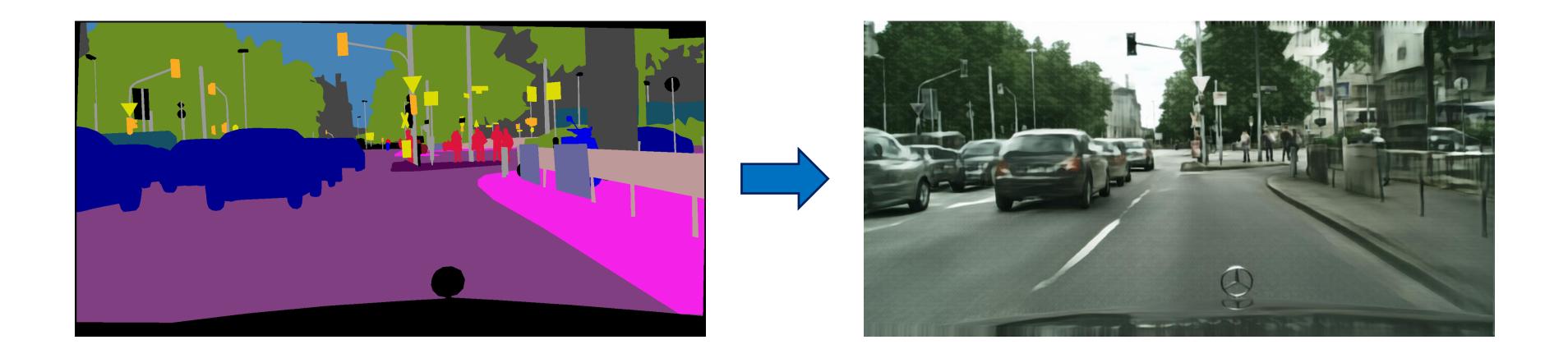
Input layout

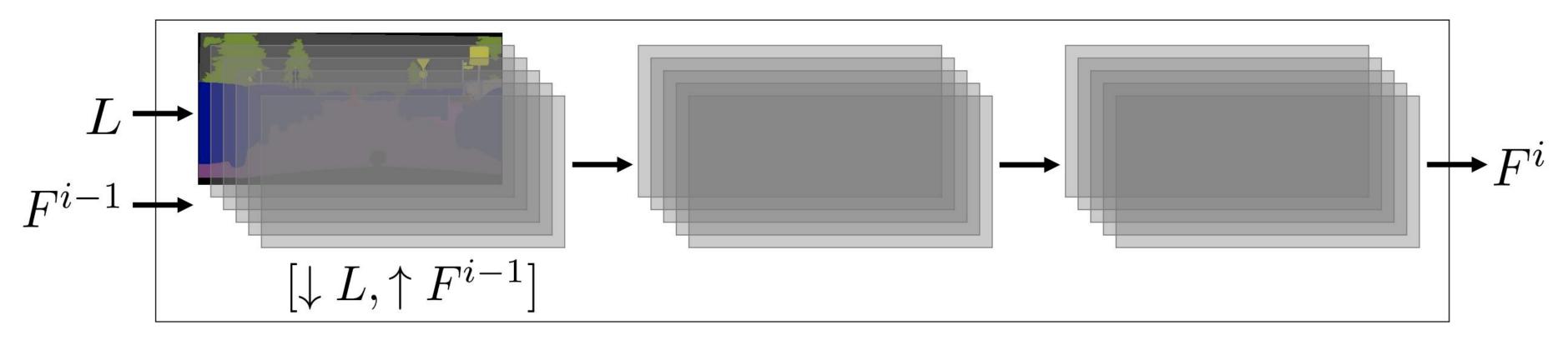
Our result

Isola et al.



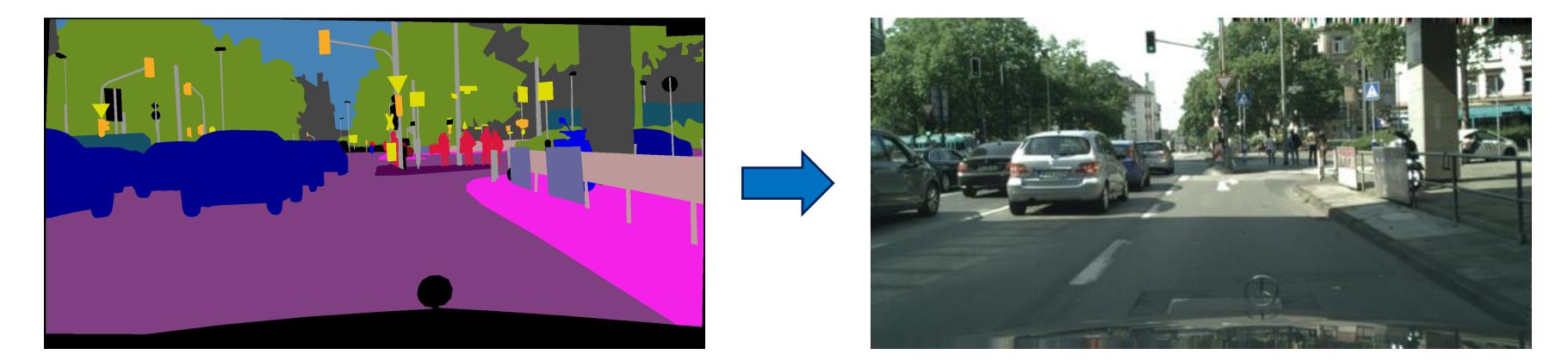
Cascaded refinement networks

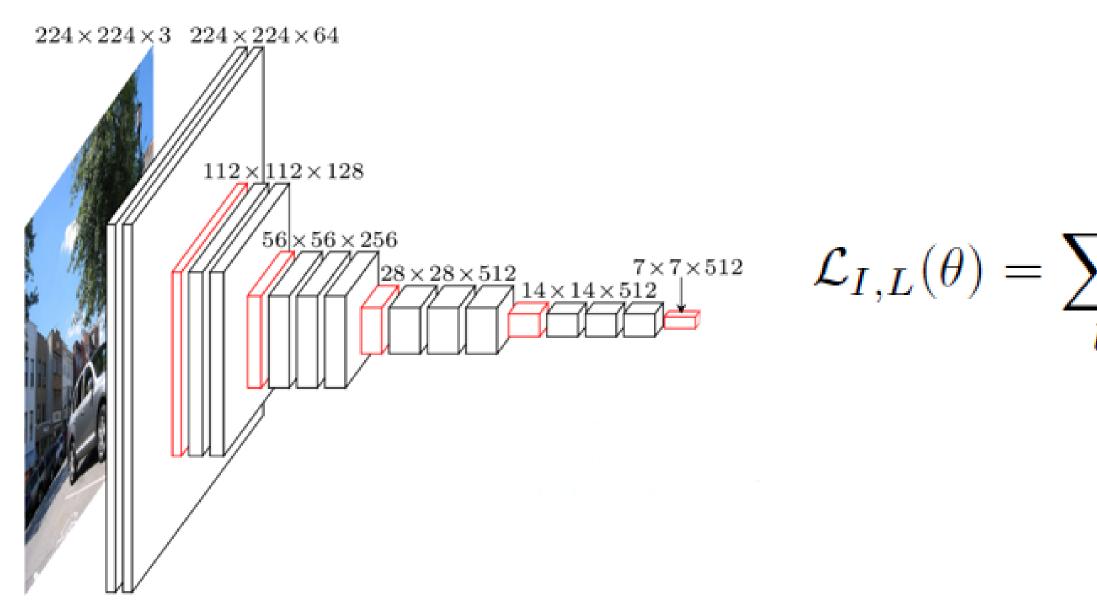




High Resolution

Perceptual Loss

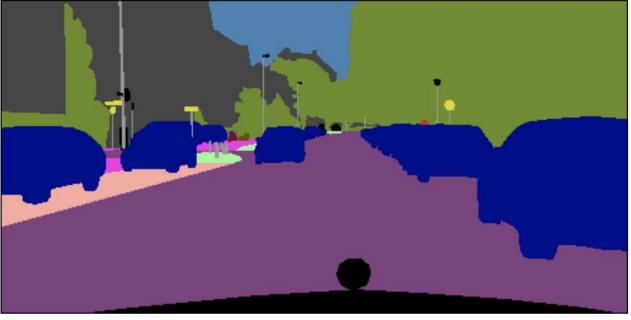




$\mathcal{L}_{I,L}(\theta) = \sum_{l} \lambda_{l} \|\Phi_{l}(I) - \Phi_{l}(g(L;\theta))\|_{1}.$

Diversity

Comparisons on Cityscapes



Semantic layout

GAN+semantic segmenation

Our result

Isola et al. [16]

Full-resolution network

Encoder-decoder

Results on NYU dataset

Semantic layout

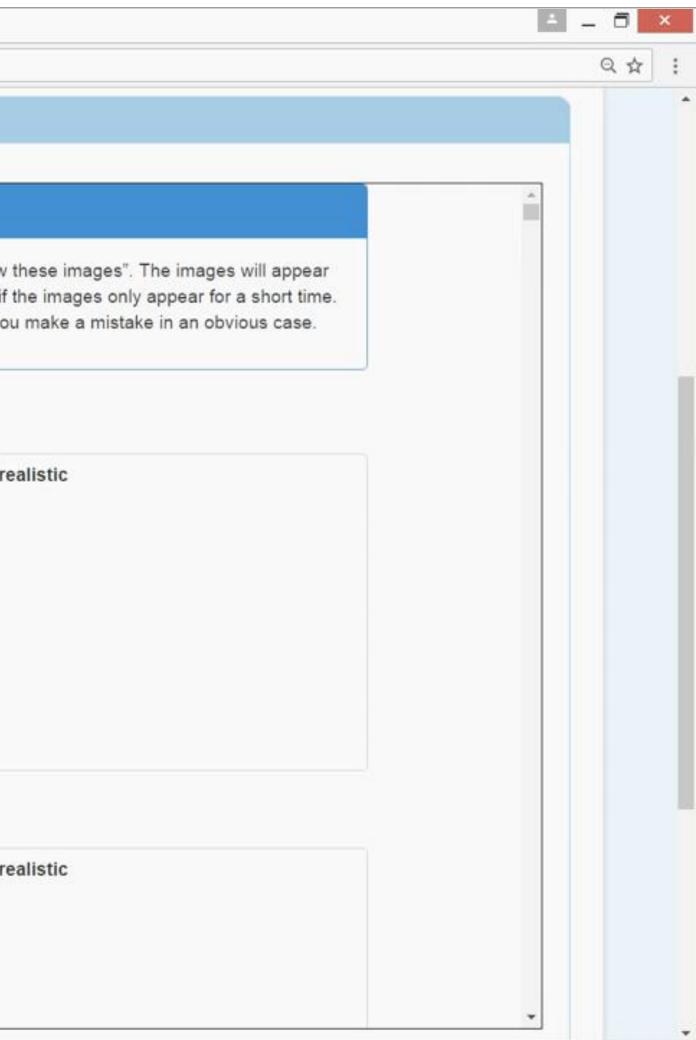
Our result Isola et al. [16] Figure 6. Qualitative comparison on the NYU dataset.

Full-resolution network

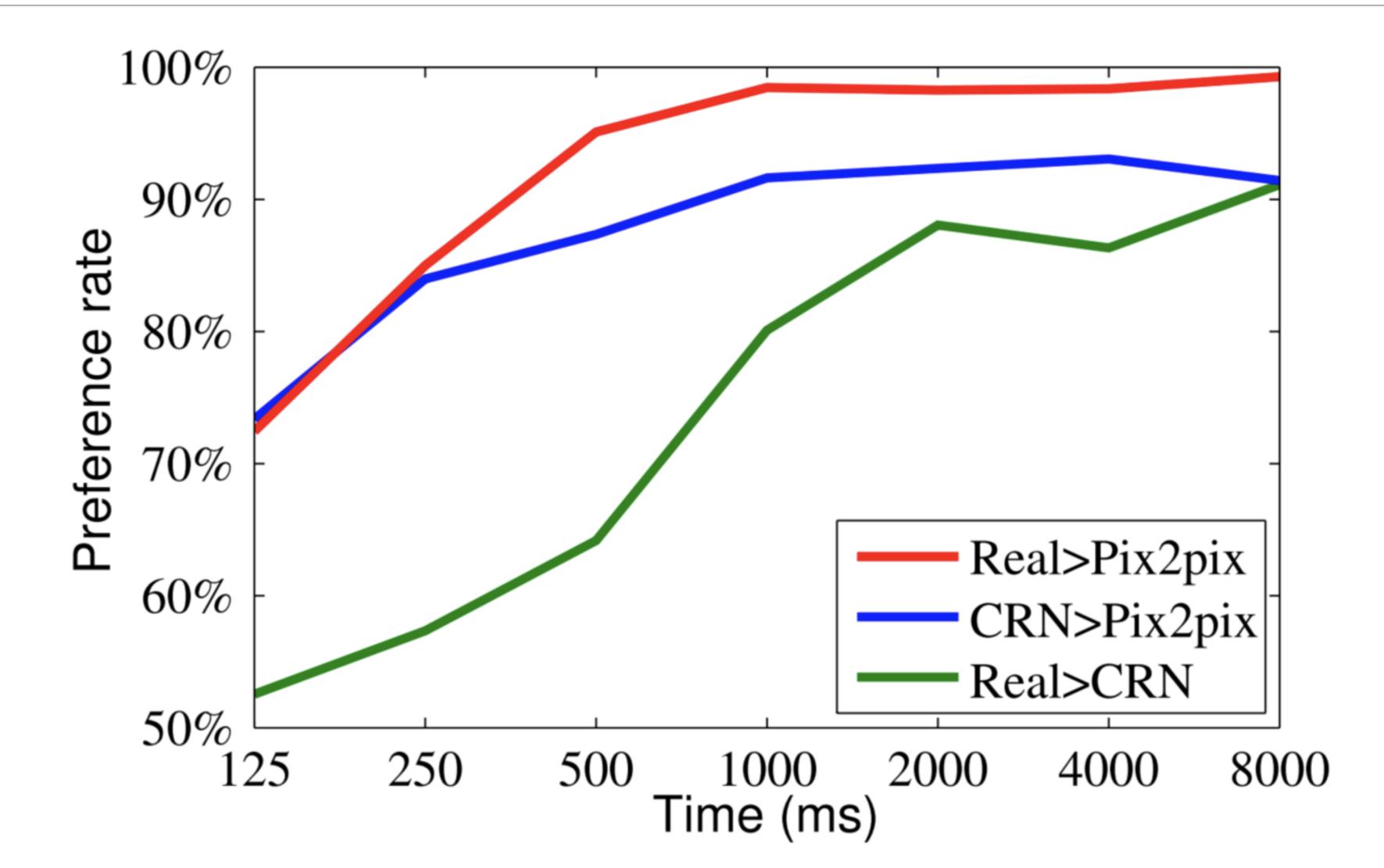
Encoder-decoder

User Study

ps://requester.mturk.com/create/projects/962974/batches/2739768/preview HIT Preview			
In each row, pick the image that is more realistic (le	eft or right)		
for some time: between 0.1 to 8 seconds. Focus before	airs of images) in this HIT. For each row, focus on the two images, then click "Show n 0.1 to 8 seconds. Focus before you click, so you see as much as possible even i the two images is more realistic: left or right. Your submission may be rejected if yo		
G	Show these images		
Left image is more realistic	Right image is more result.		
Show these images			
Left image is more realistic	Right image is more re		



Userstudy



GTA5 and Demo Video

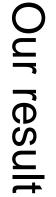
Photographic Image Synthesis with Cascaded Refinement Networks

Qifeng Chen Vladlen Koltun

ICCV 2017

Semi-parametric Image Synthesis

Semantic layouts



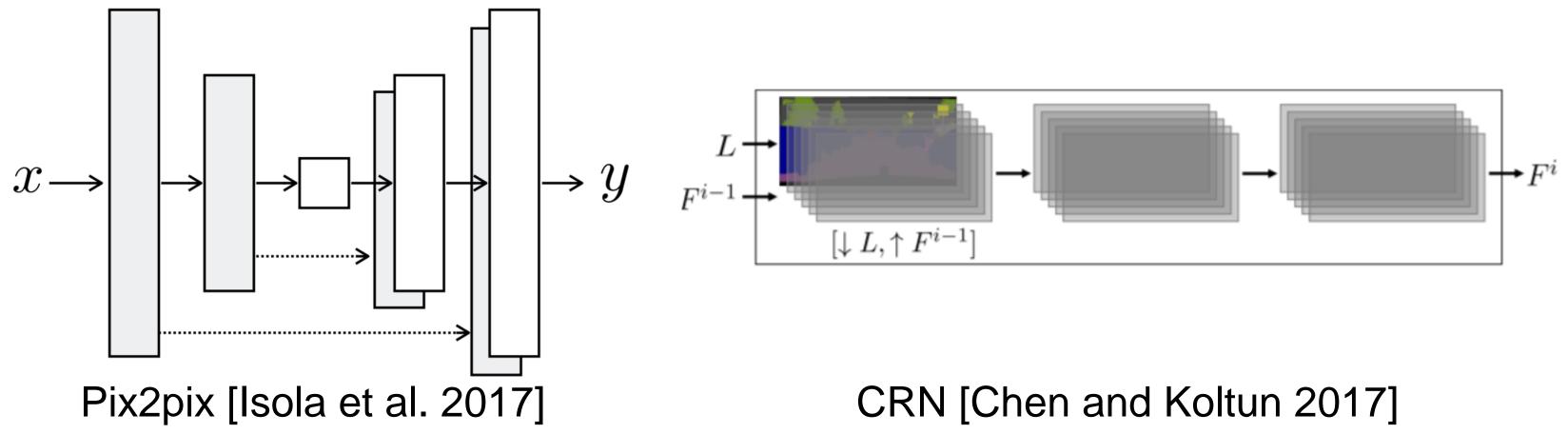
Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun Semi-parametric Image Synthesis. CVPR 2018

Image Synthesis

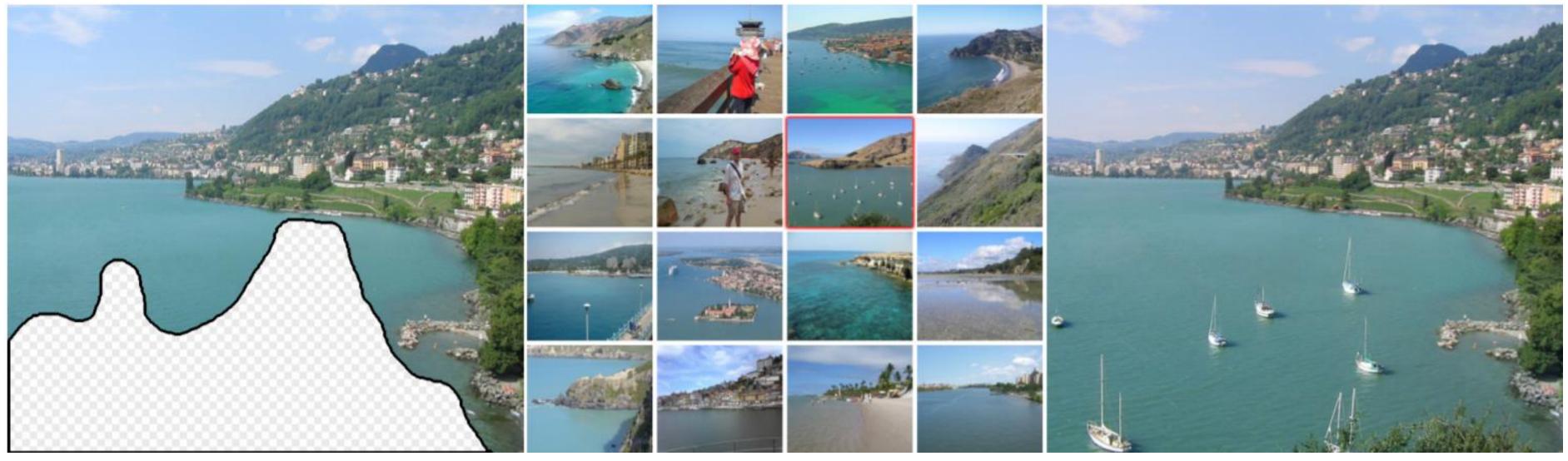
NYU dataset [Silberman et al. ECCV 2012]

ADE20K dataset [Zhou et al. 2017]

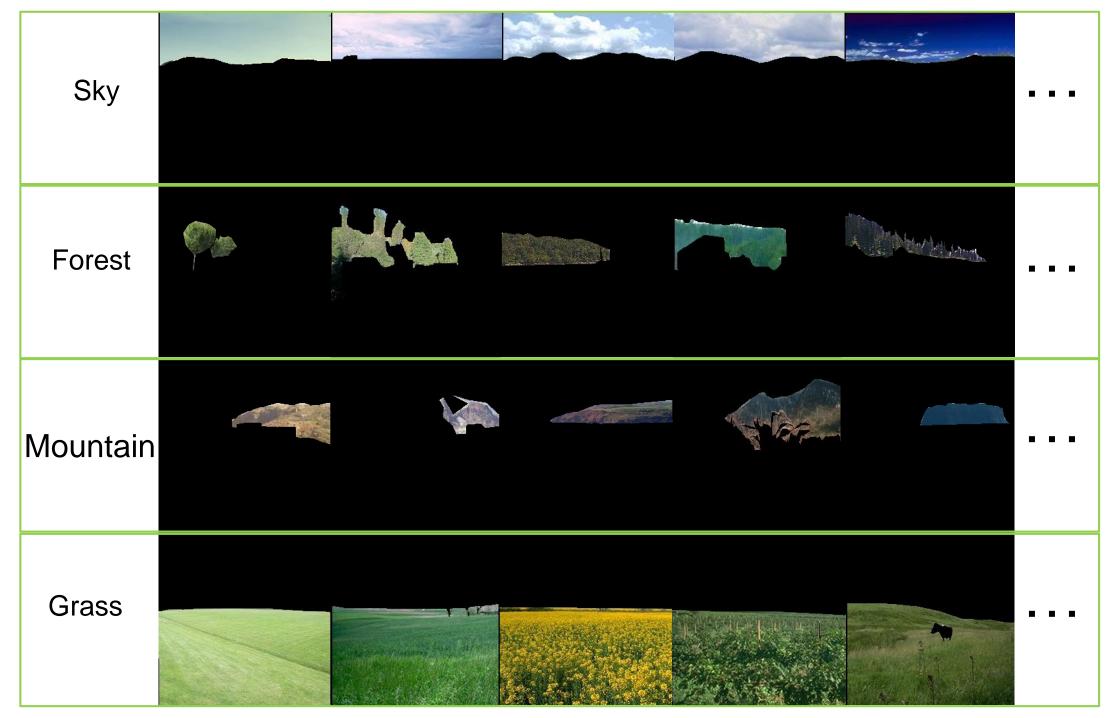
Prior Work: Parametric Models



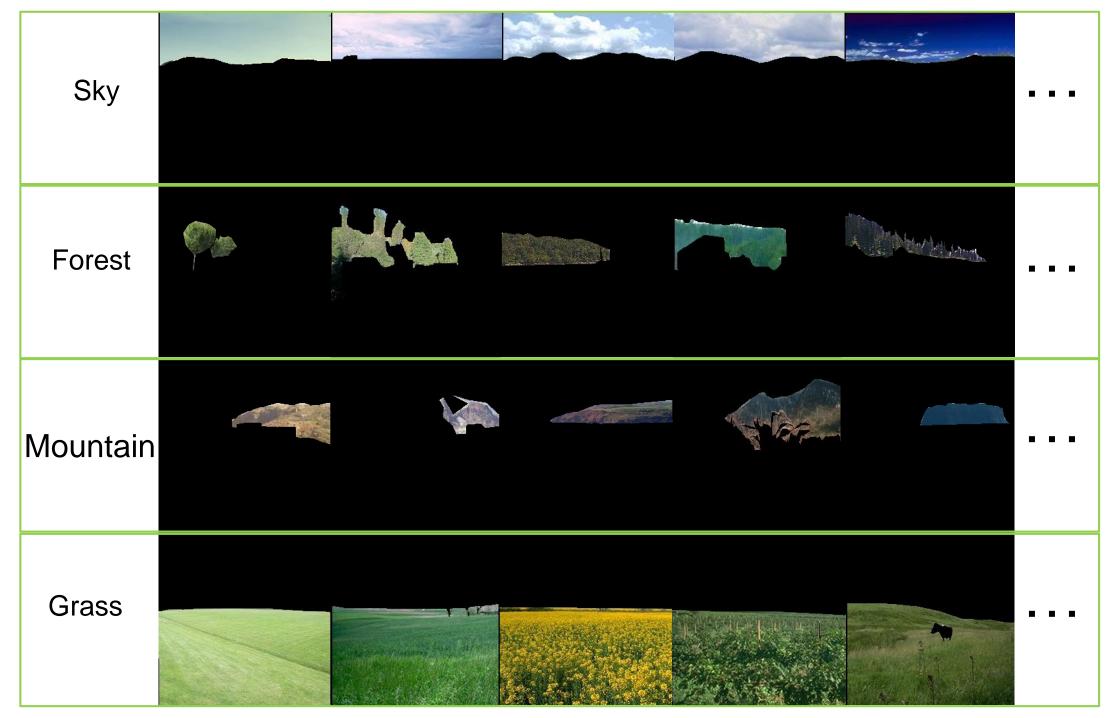
Prior Work: Non-parametric Models



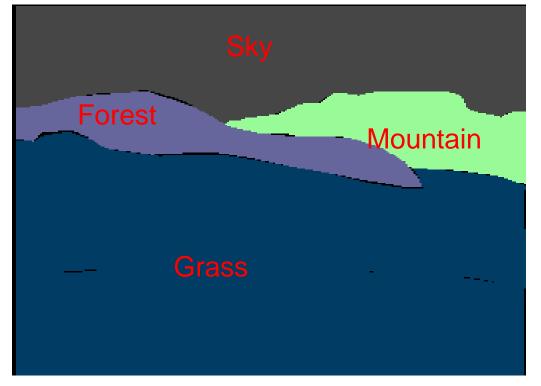
Scene Completion using Millions of Photographs [Hays and Efros 2007]



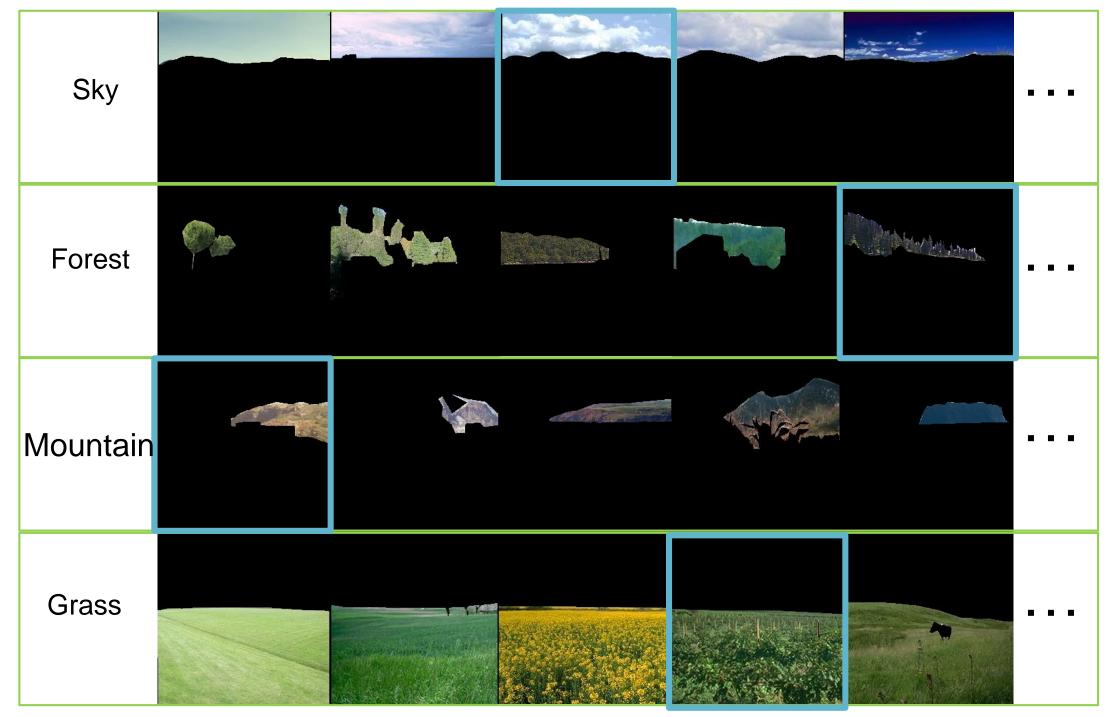
External memory



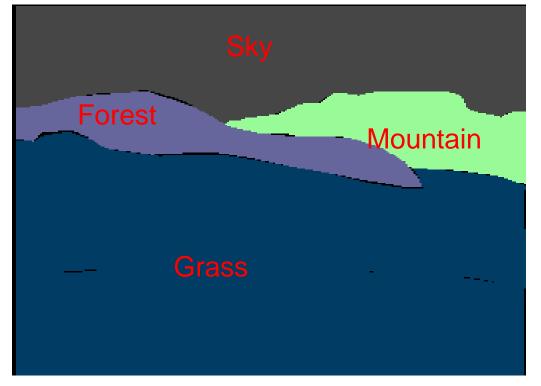
External memory



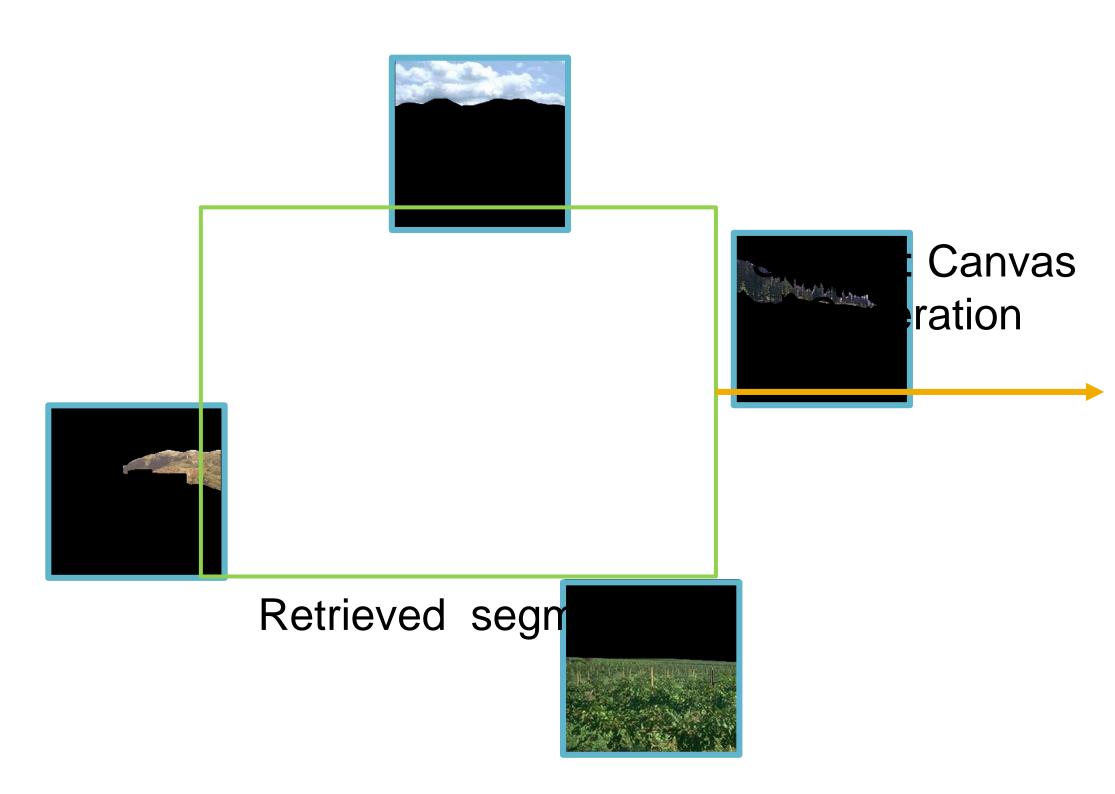
Semantic layout



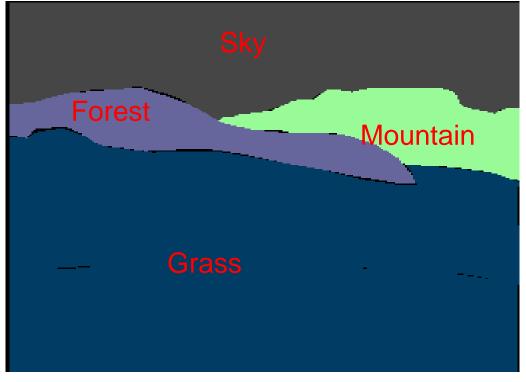
External memory



Semantic layout

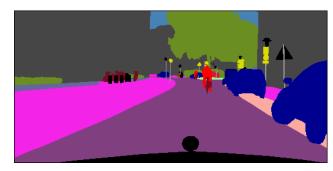


Stage 2: Image Synthesis



Semantic layout

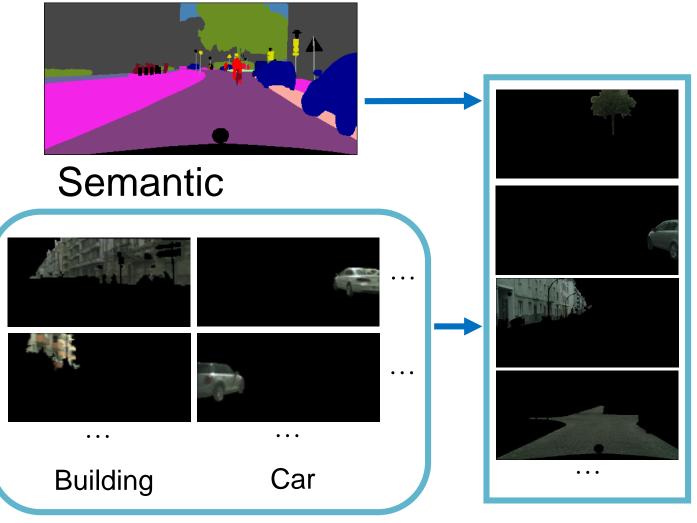
Figancesult



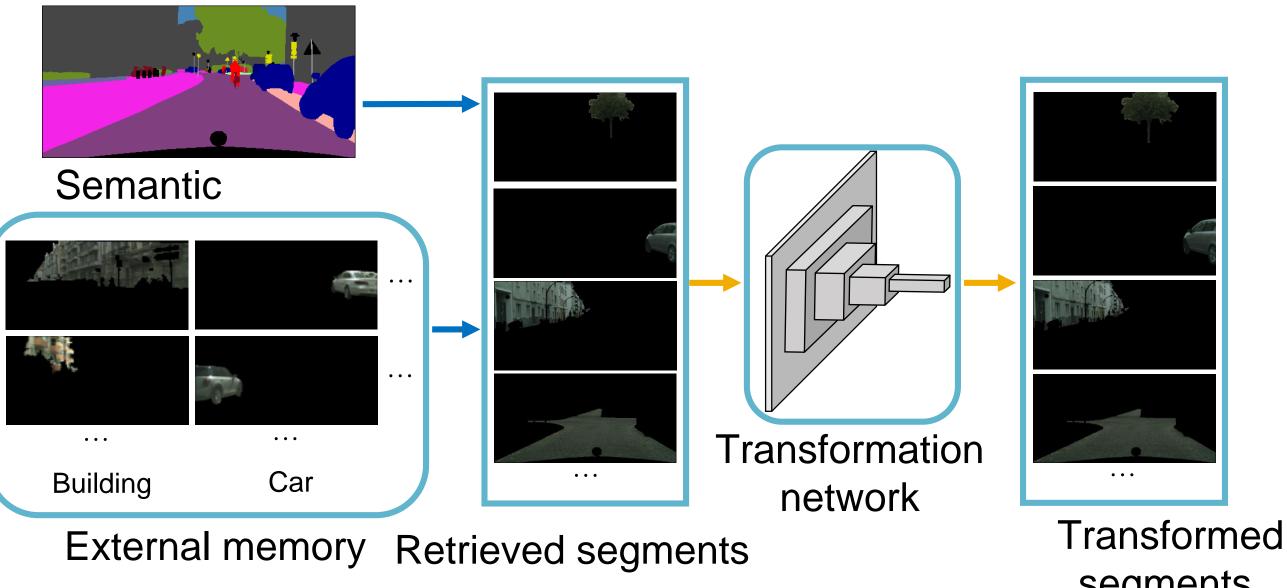
Semantic

	• • •	•••	
	Building	Car	

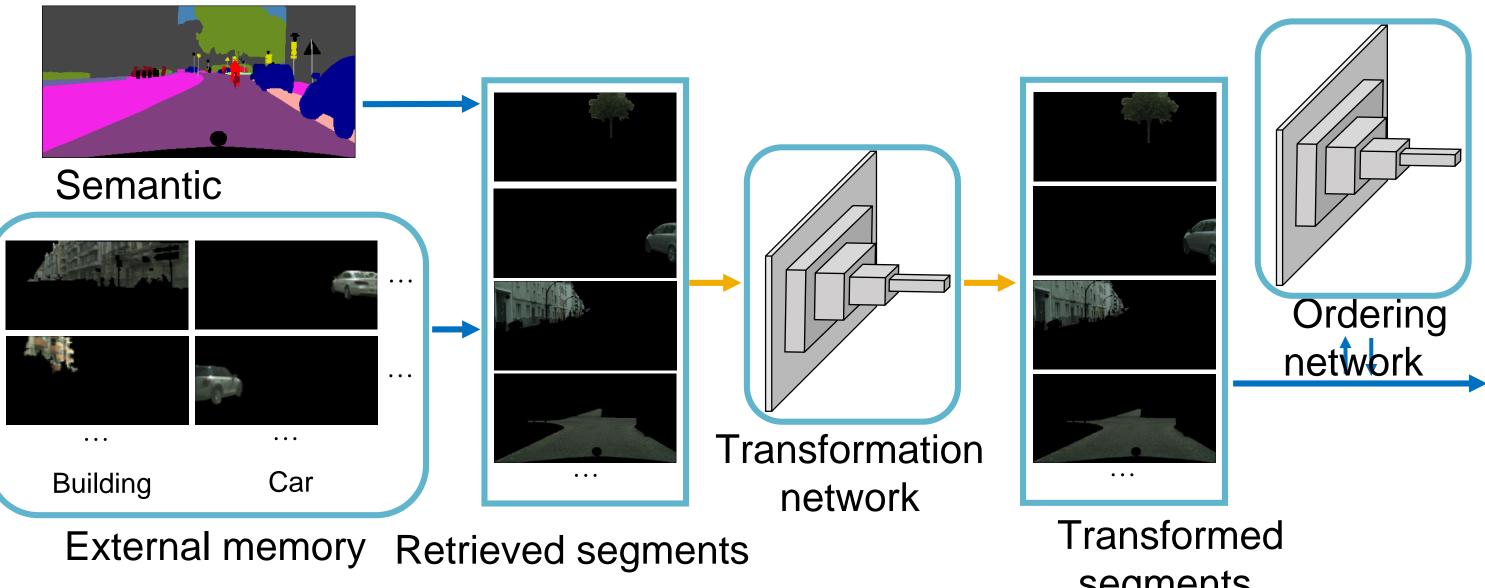
External memory

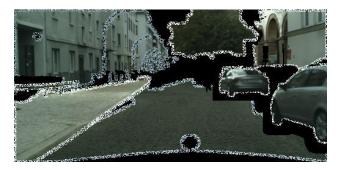


External memory Retrieved segments



segments

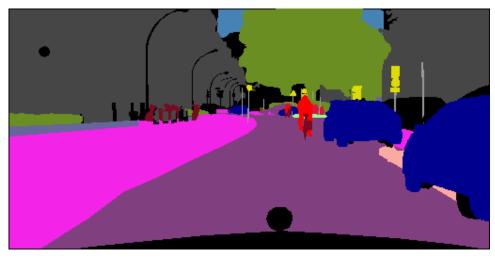




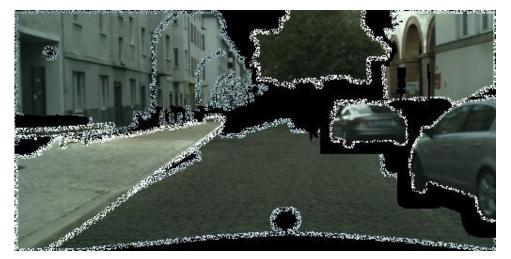
Canvas

segments

SIMS: Image Synthesis

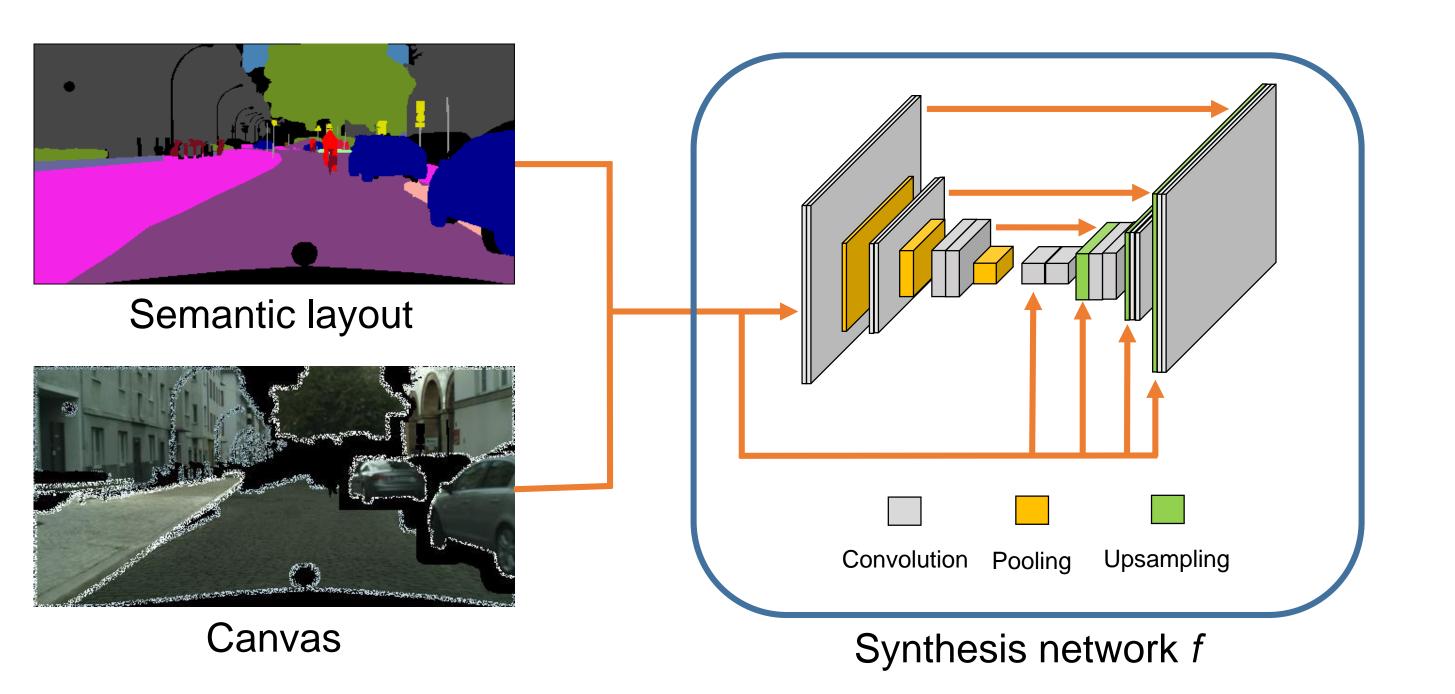


Semantic layout

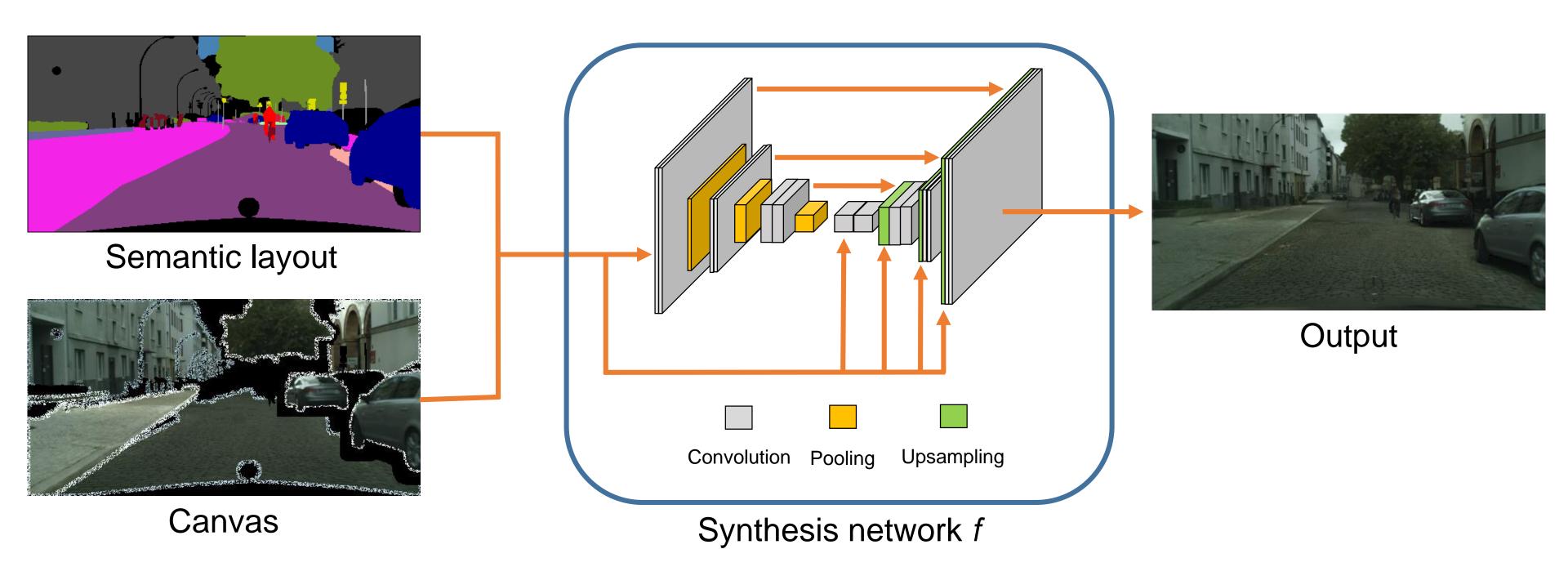


Canvas

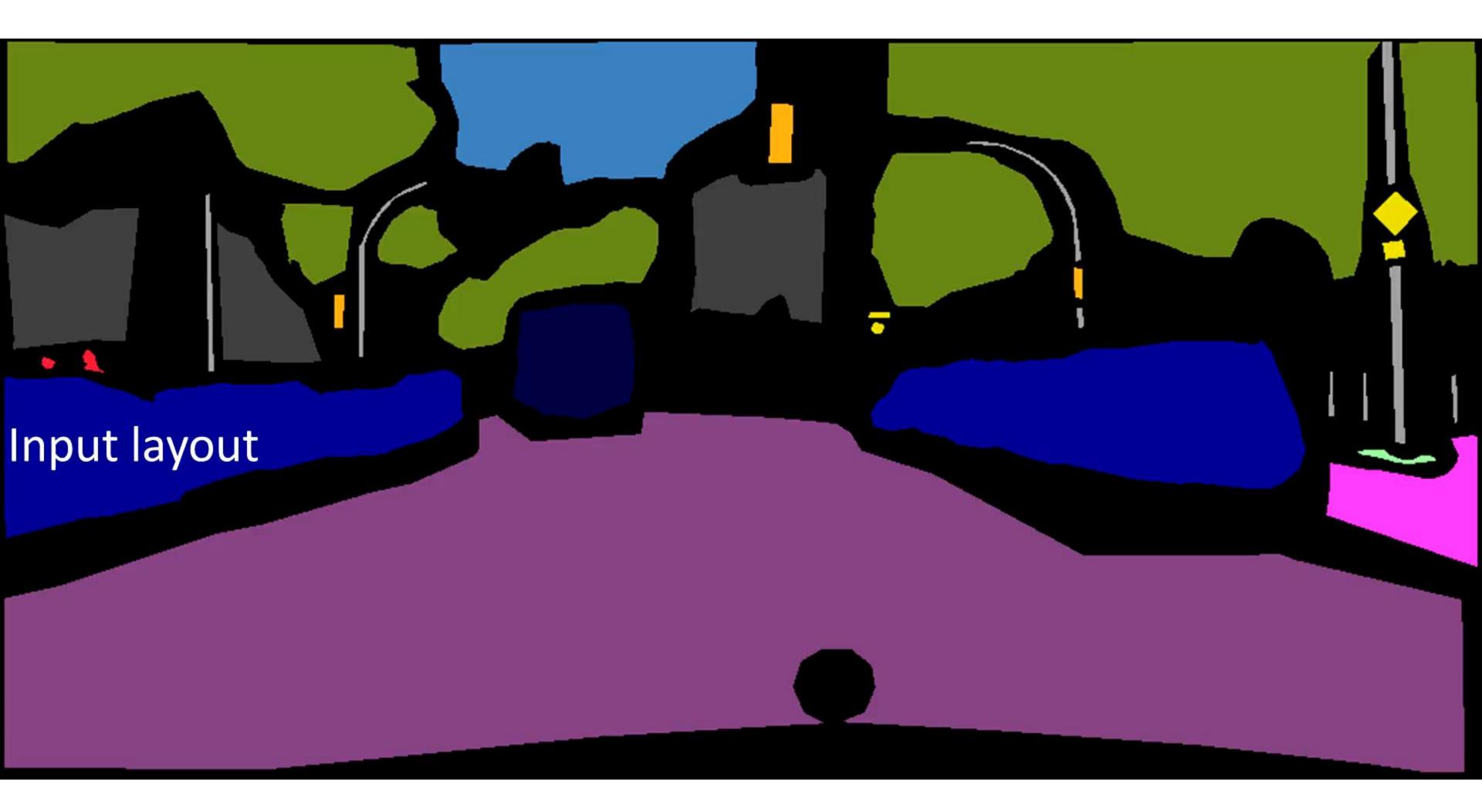
SIMS: Image Synthesis



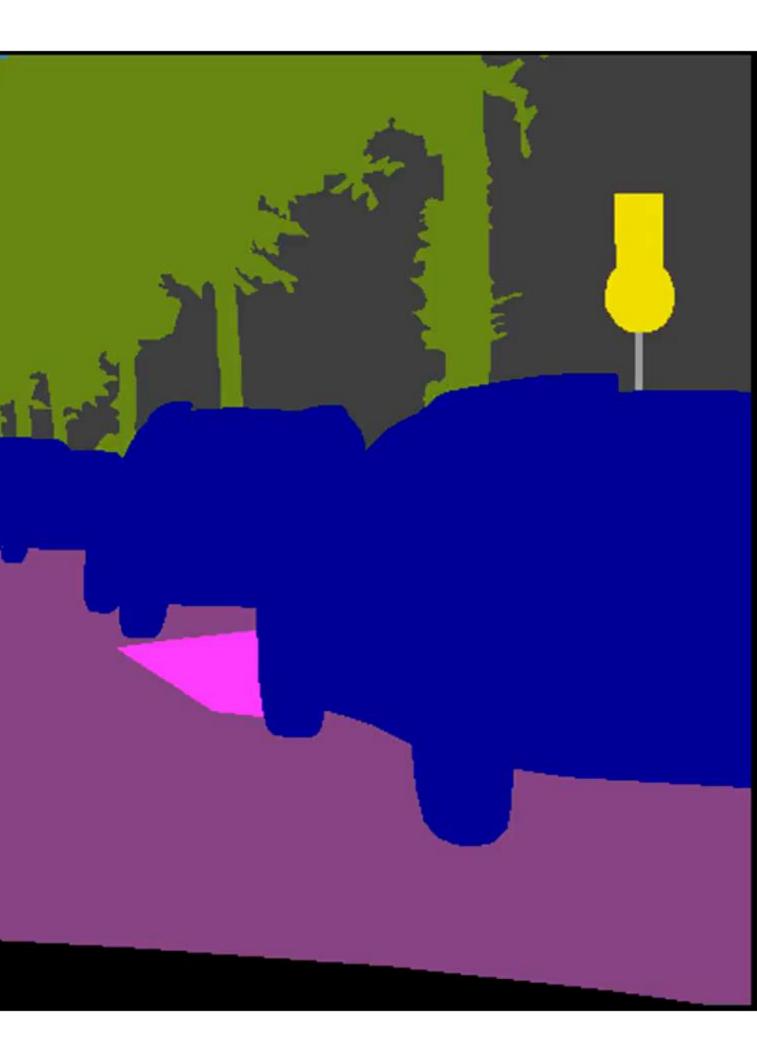
SIMS: Image Synthesis



Results



Input layout

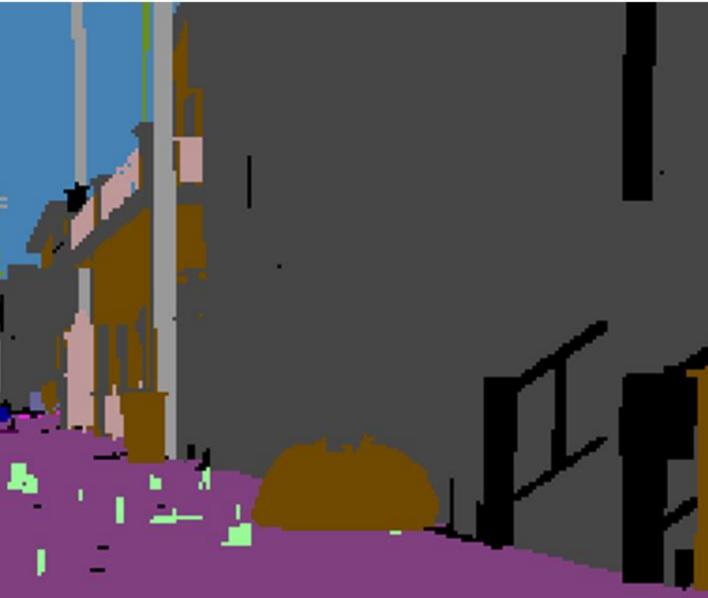


Input layout

. . . I.

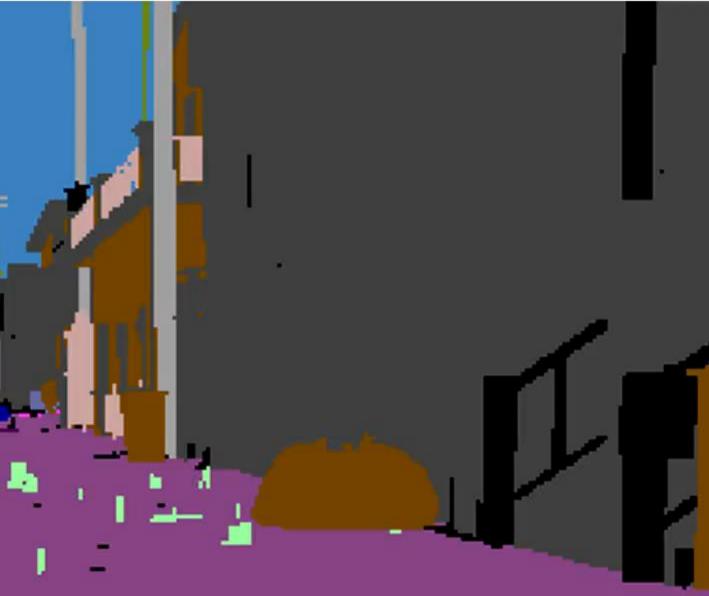
10

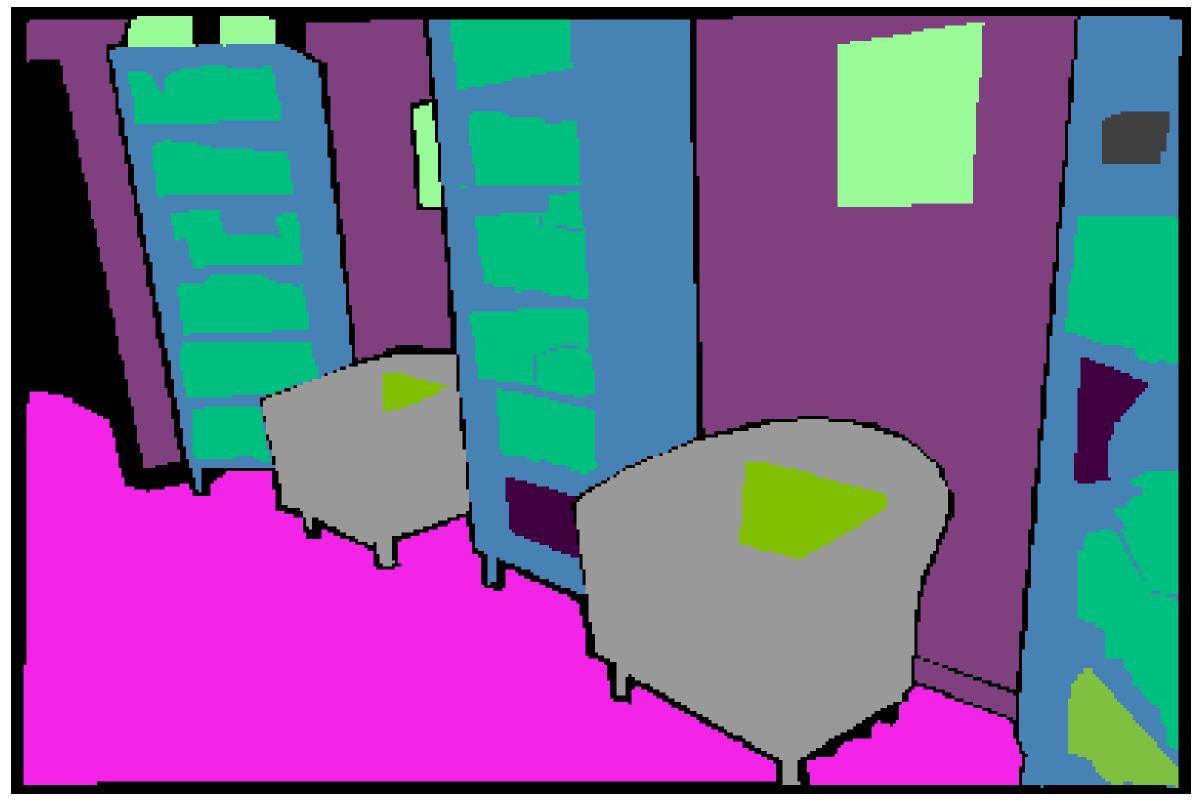
100



Input layout

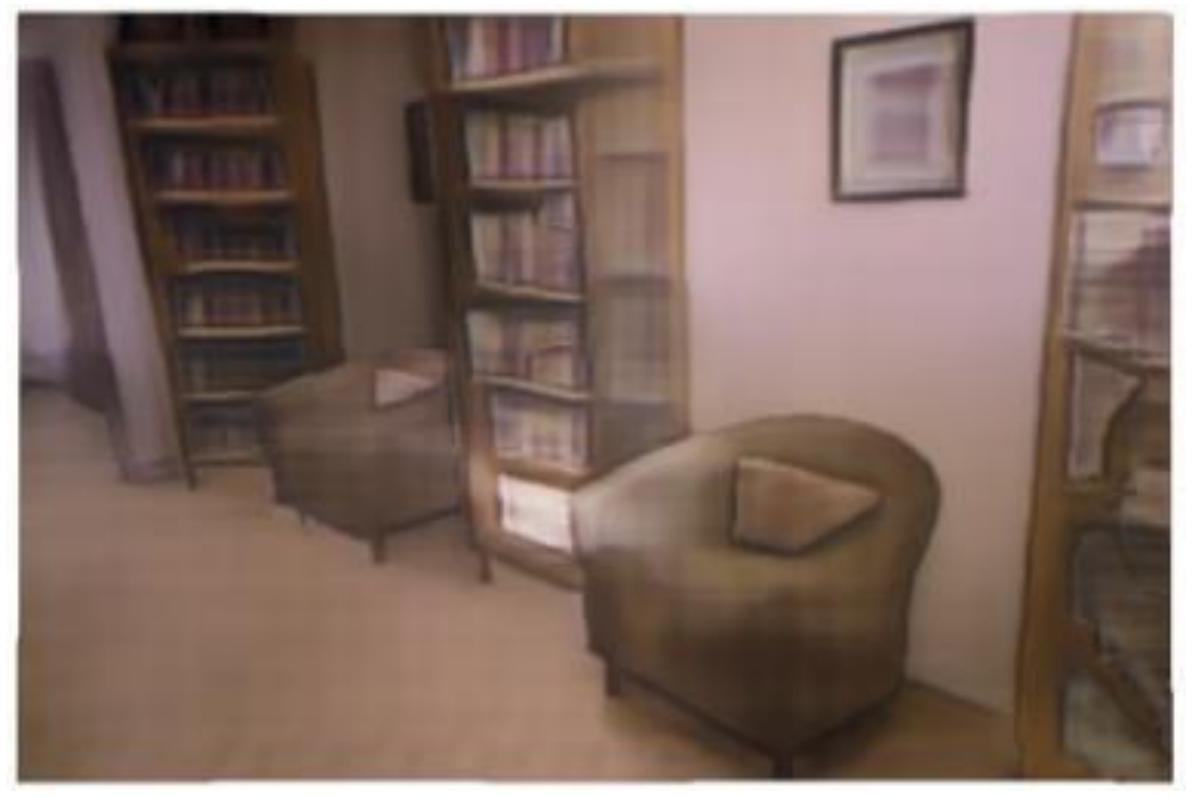
. !





Semantic layout

Pix2pix [Isola et al. 2017]

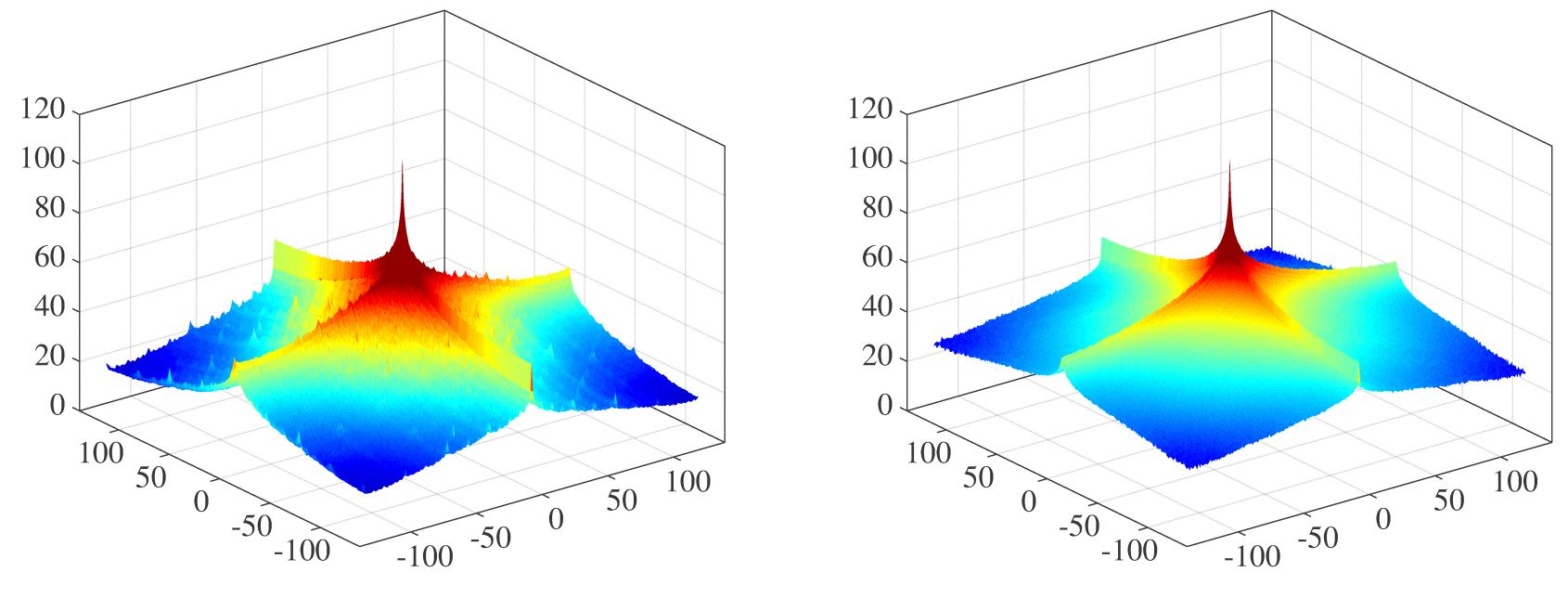


CRN [Chen and Koltun 2017]

Our result

Diversified Synthesis

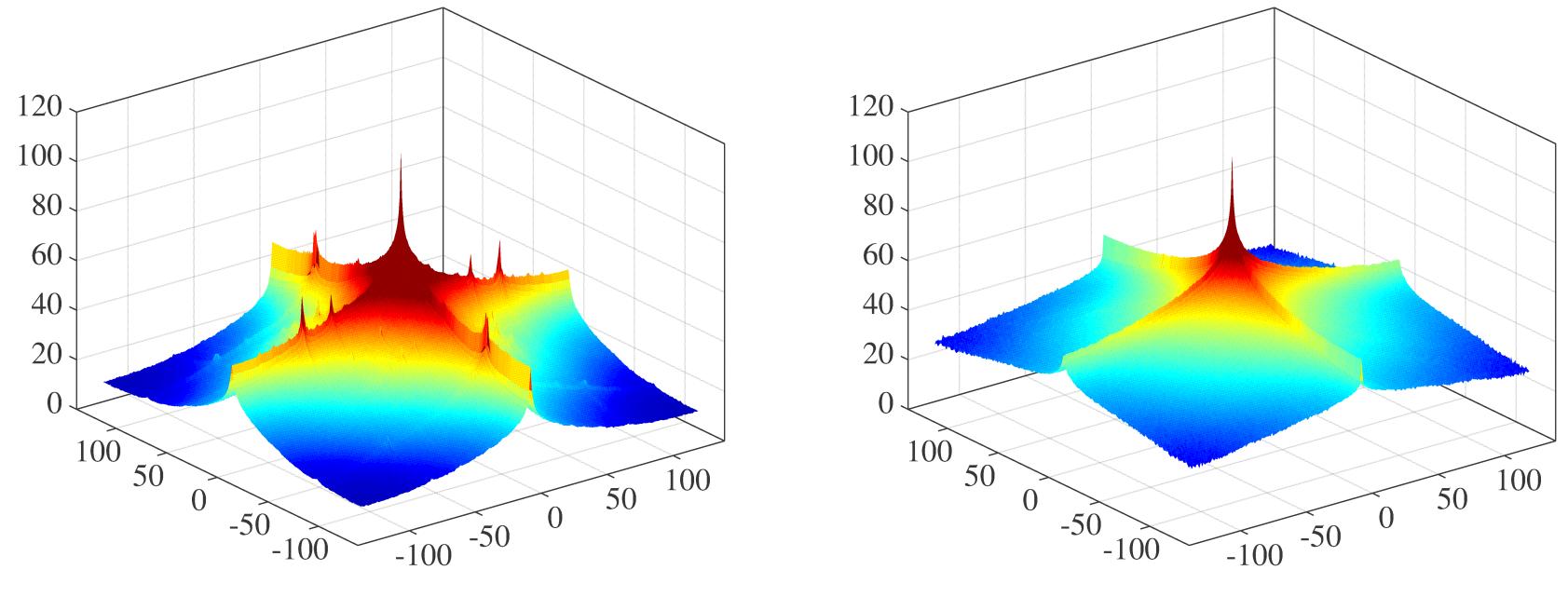
Image Statistics Mean Power Spectrum



Pix2pix [Isola et al. 2017]

Real images

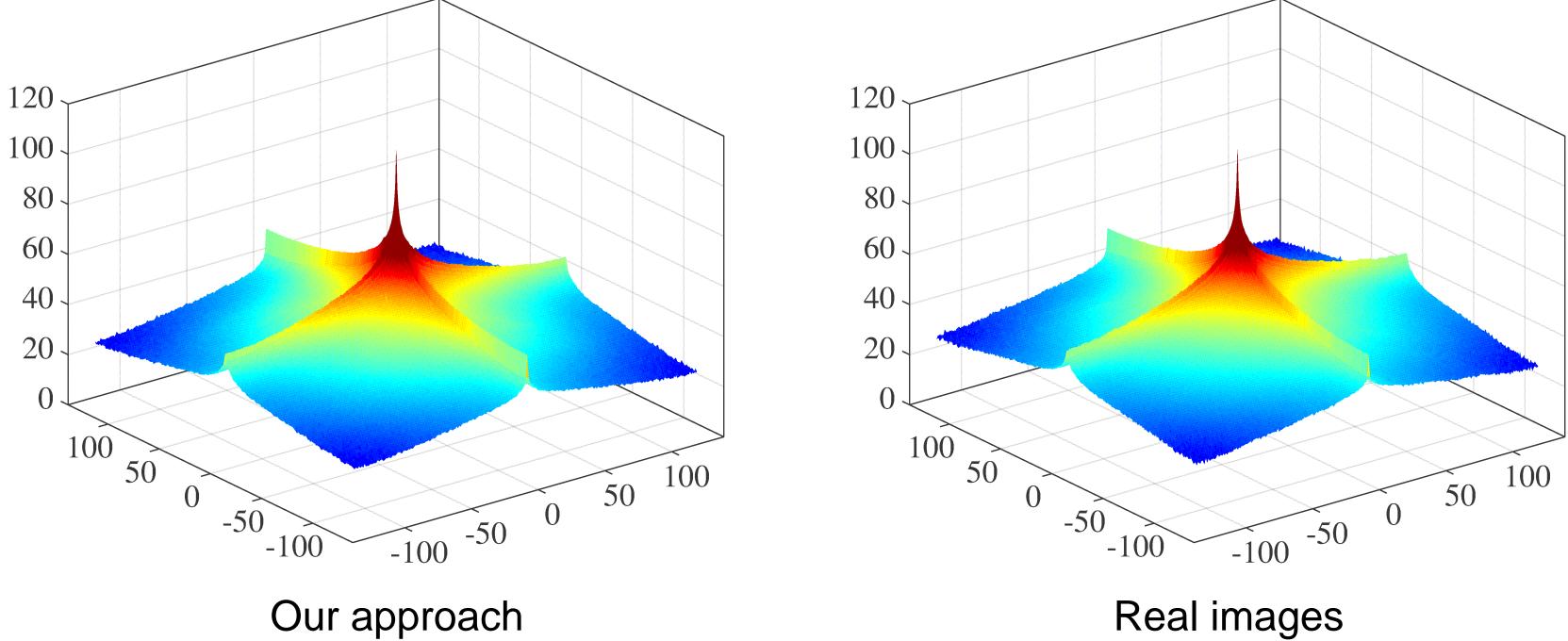
Image Statistics



CRN [Chen and Koltun 2017]

Real images

Image Statistics



Real images

Perceptual Experiments

	Cityscape s (coarse)	Cityscap es (fine)	Cityscap es (GTA5)	NYU (fine)	ADE20K (coarse)	Mean
SIMS > Pix2pix	94.2%	98.1%	95.7%	94.9%	87.6%	94.1%
SIMS > CRN	93.9%	74.1%	84.5%	89.1%	88.9%	86.1%

Thank You

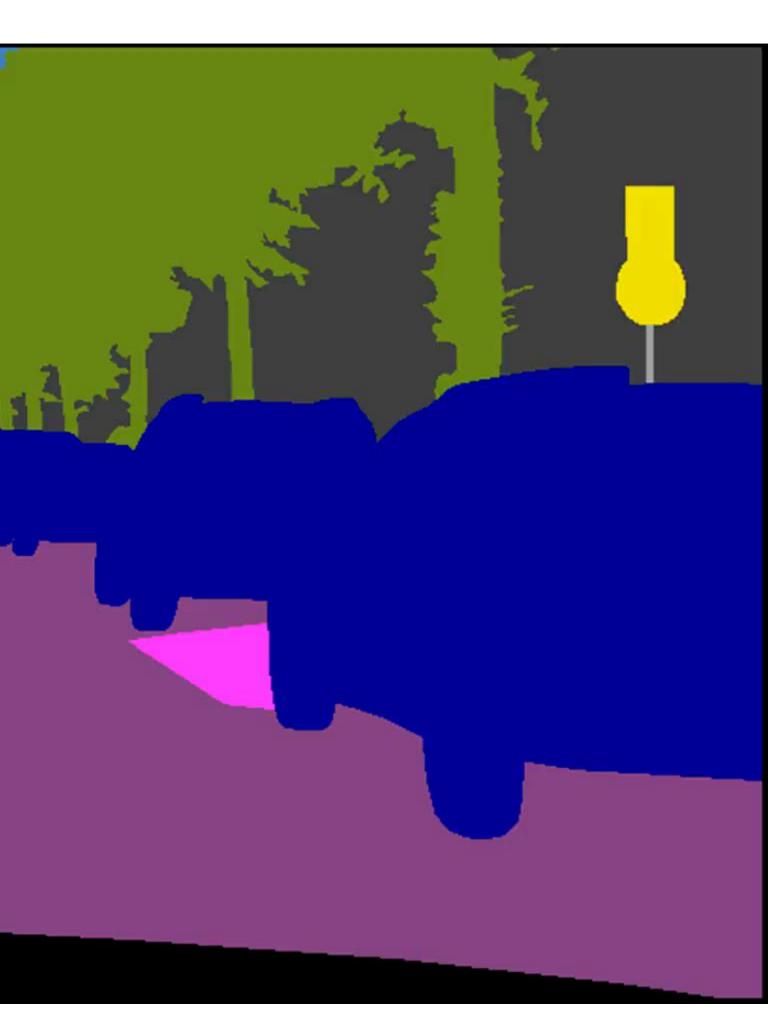
•

1111

l.

6.0

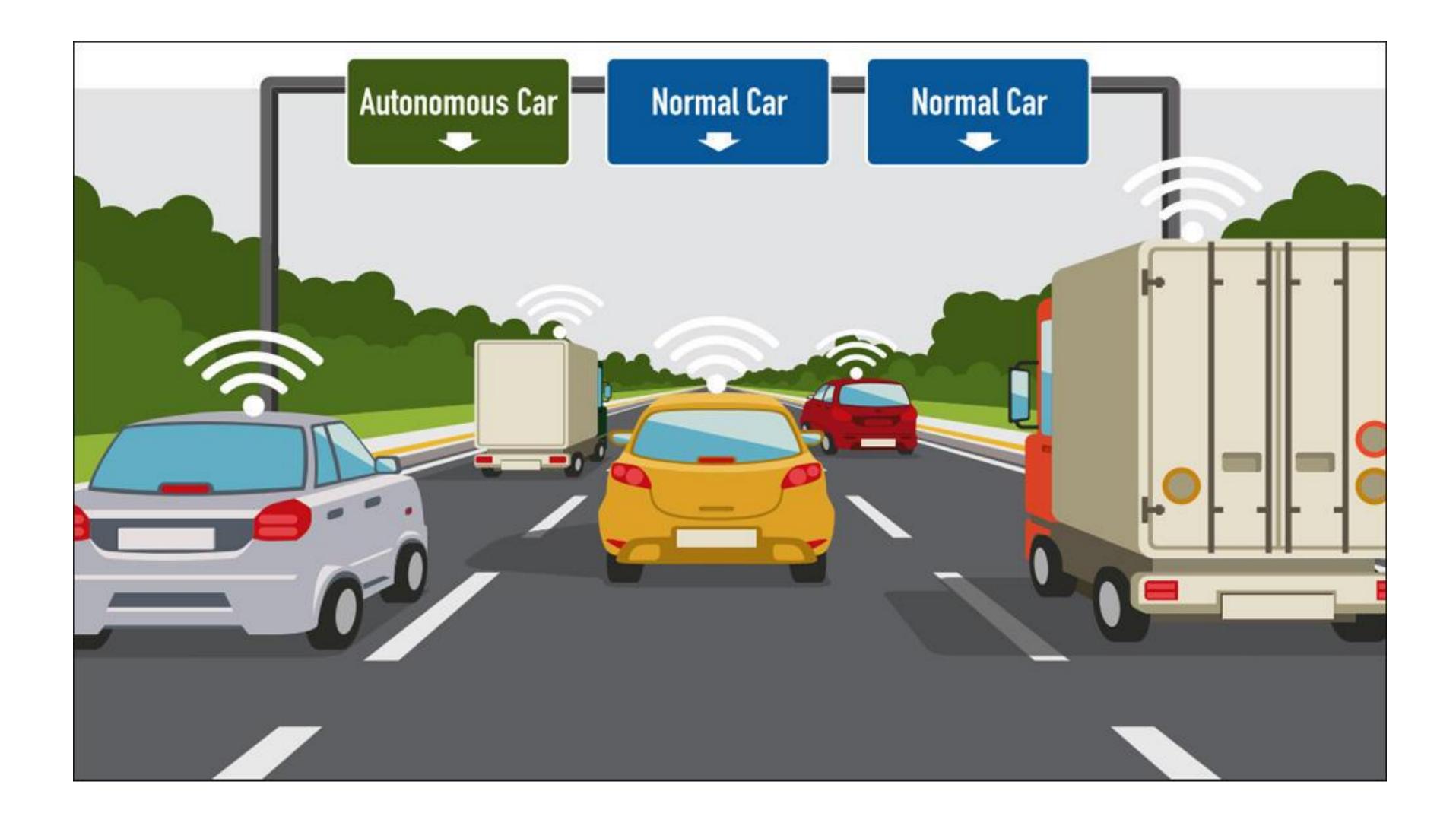
<u>Thank You</u>



Thank You

Thank You

Future Prediction



Video Prediction

3D Motion Decomposition for RGBD Future Dynamic Scene Synthesis

Paper ID: 3727

3D Motion Decomposition for RGBD Future Dynamic Scene Synthesis

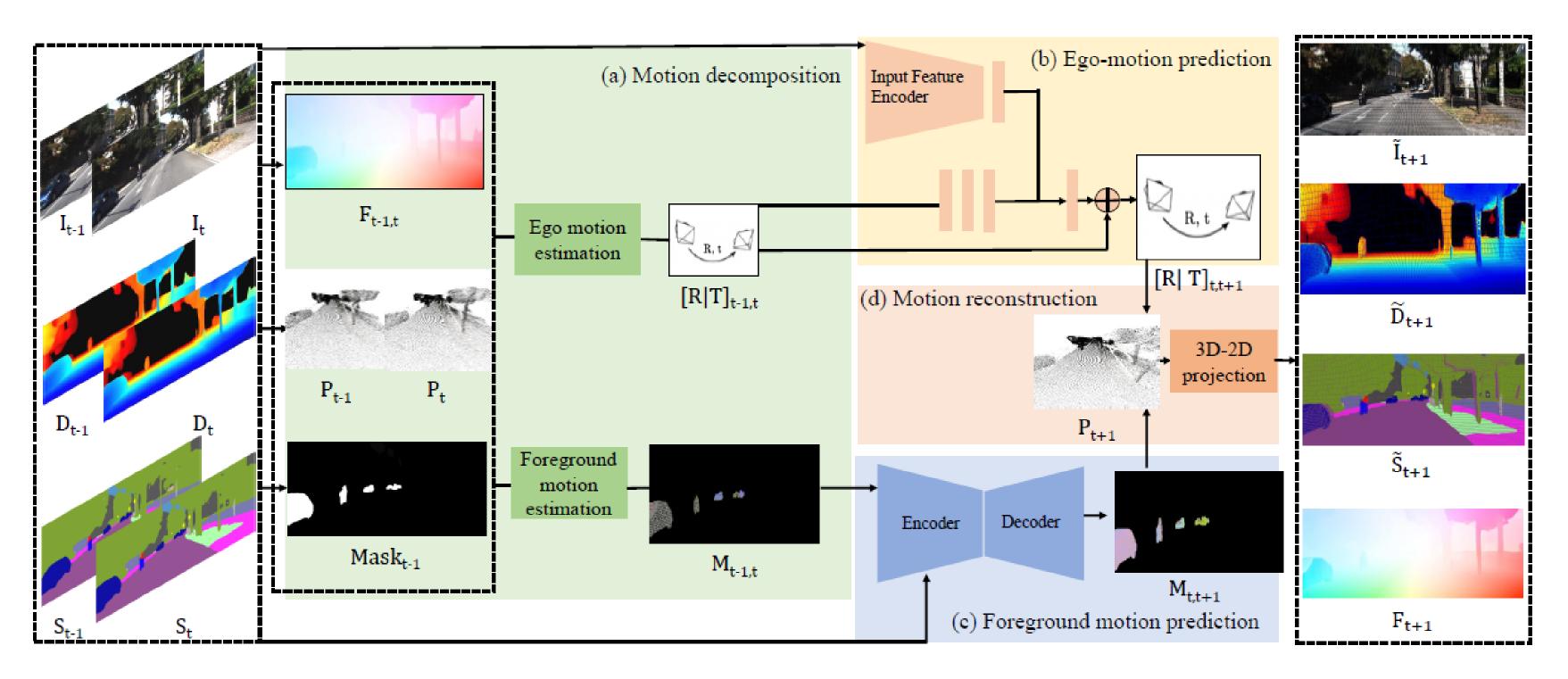


Figure 1: Motion forecasting with decomposition and composition. The input includes images (I_{t-1}, I_t) , depth maps (D_{t-1}, D_t) , and semantic maps (S_{t-1}, S_t) . (a) The motion decomposition module decomposes motion into ego motion $[R|T]_{t-1,t}$ and moving object motion $M_{t-1,t}$. (b) The ego-motion prediction network and (c) the foreground motion prediction network generate future ego-motion $[R|T]_{t,t+1}$ and foreground motion $M_{t,t+1}$ respectively. (d) The motion composition module composes a predicted motion field and a new 3D point cloud P_{t+1} . P_{t+1} is then projected to a 2D image plane. $M_{t-1,t}$ and $M_{t,t+1}$ are color coded where R, G, B channels represent movement along x, y, z directions.

3D Motion Decomposition for RGBD Future Dynamic Scene Synthesis

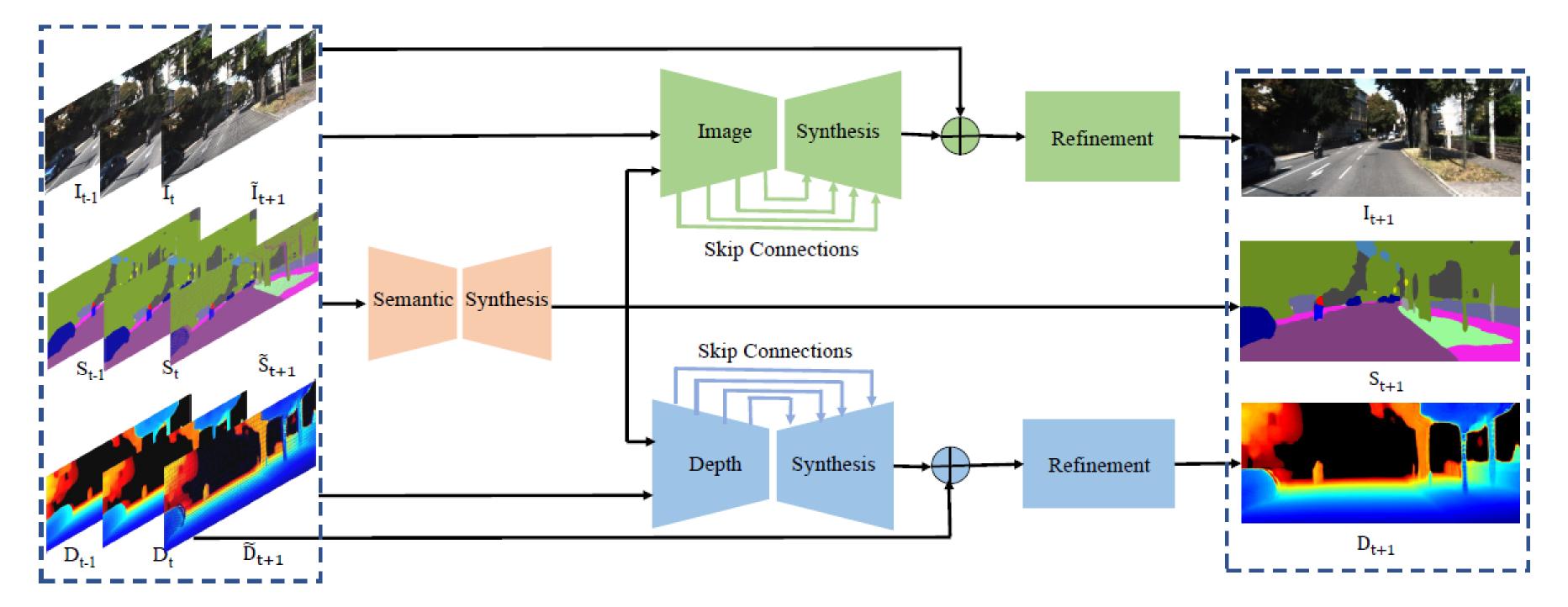
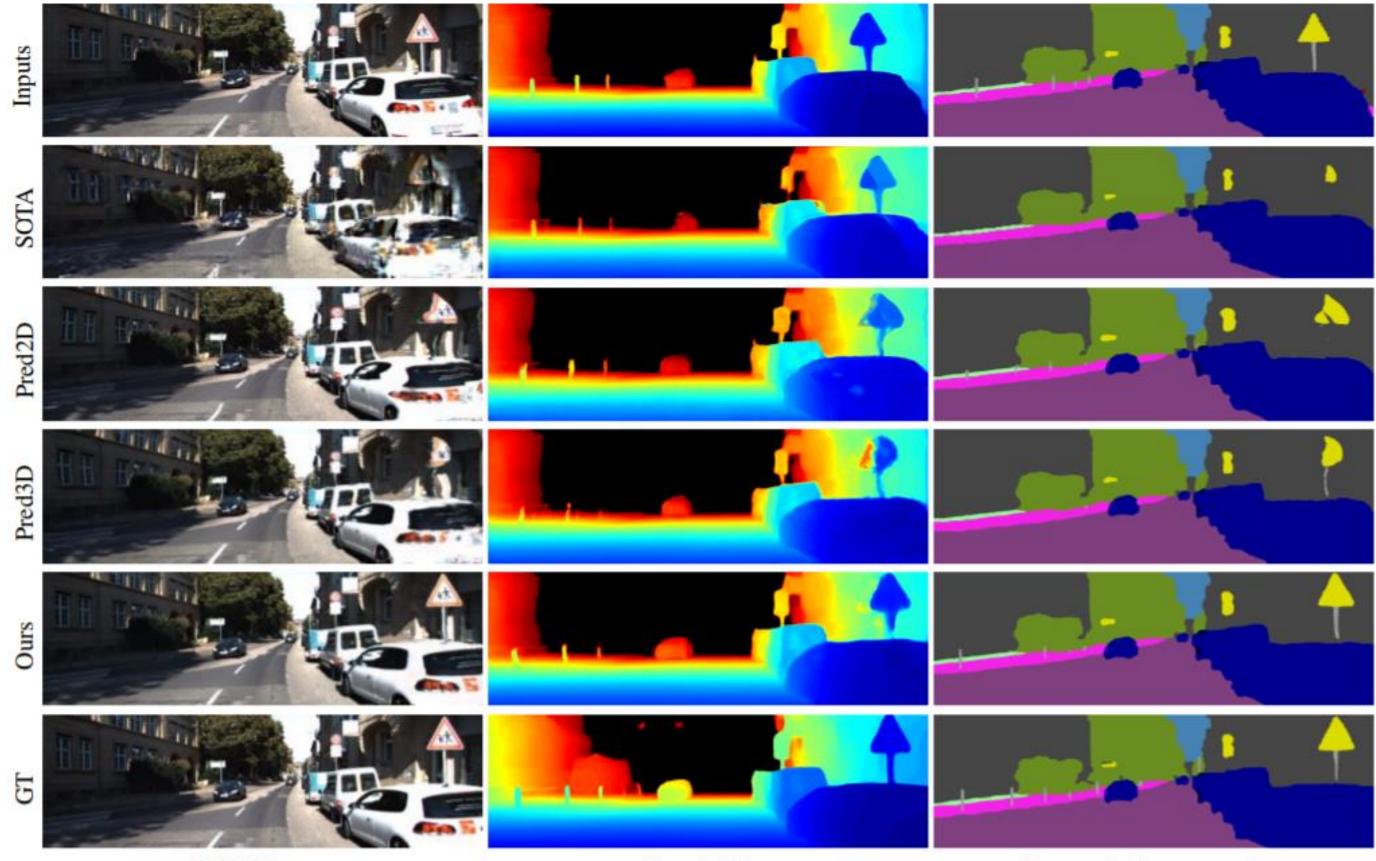


Figure 2: Refinement network. Taking as input the color images $(I_{t-1}, I_t, \tilde{I}_{t+1})$, depth maps $(D_{t-1}, D_t, \tilde{D}_{t+1})$, and semantic maps $(S_{t-1}, S_t, \tilde{S}_{t+1})$, the refinement network synthesizes image I_{t+1} , depth map D_{t+1} and semantic map S_{t+1} by refining the projected image \tilde{I}_{t+1} , depth \tilde{D}_{t+1} and \tilde{S}_{t+1} .



RGB ImageDepth MapSemantic SegmentationFigure 3: Visualization of different methods on next-frame prediction on the KITTI dataset. Input images are at time t. In
the second row, the image is produced by MCNet [29] and depth map is produced by PredNet [13] while the segmentation
map is from S2S [15].

t+1

t+3

Figure 5: Results of predicting multiple frames. Depth and segmentation are provided in the supplement.

Our (Image)GT (Image)Our (Depth)GT (Depth)Figure 6: Visualization of our results on the Driving dataset for next frame prediction. "GT" stands for ground truth.

t+5

	Flow EPE ↓		pth iMAE↓	Ima PSNR ↑	•	Seg IoU↑
S2S [15]	-	-	_	-	_	37.31
PredNet [13]	-	3.71	5.72	12.37	0.35	-
Сору	11.88	3.25	5.38	12.36	0.36	31.85
Warp	11.51	3.32	5.67	12.48	0.35	32.67
Pred2D	8.63	3.92	7.77	12.41	0.37	37.33
Pred3D	10.56	3.09	5.38	11.99	0.38	31.87
Ours	5.57	2.63	4.17	13.05	0.41	41.70

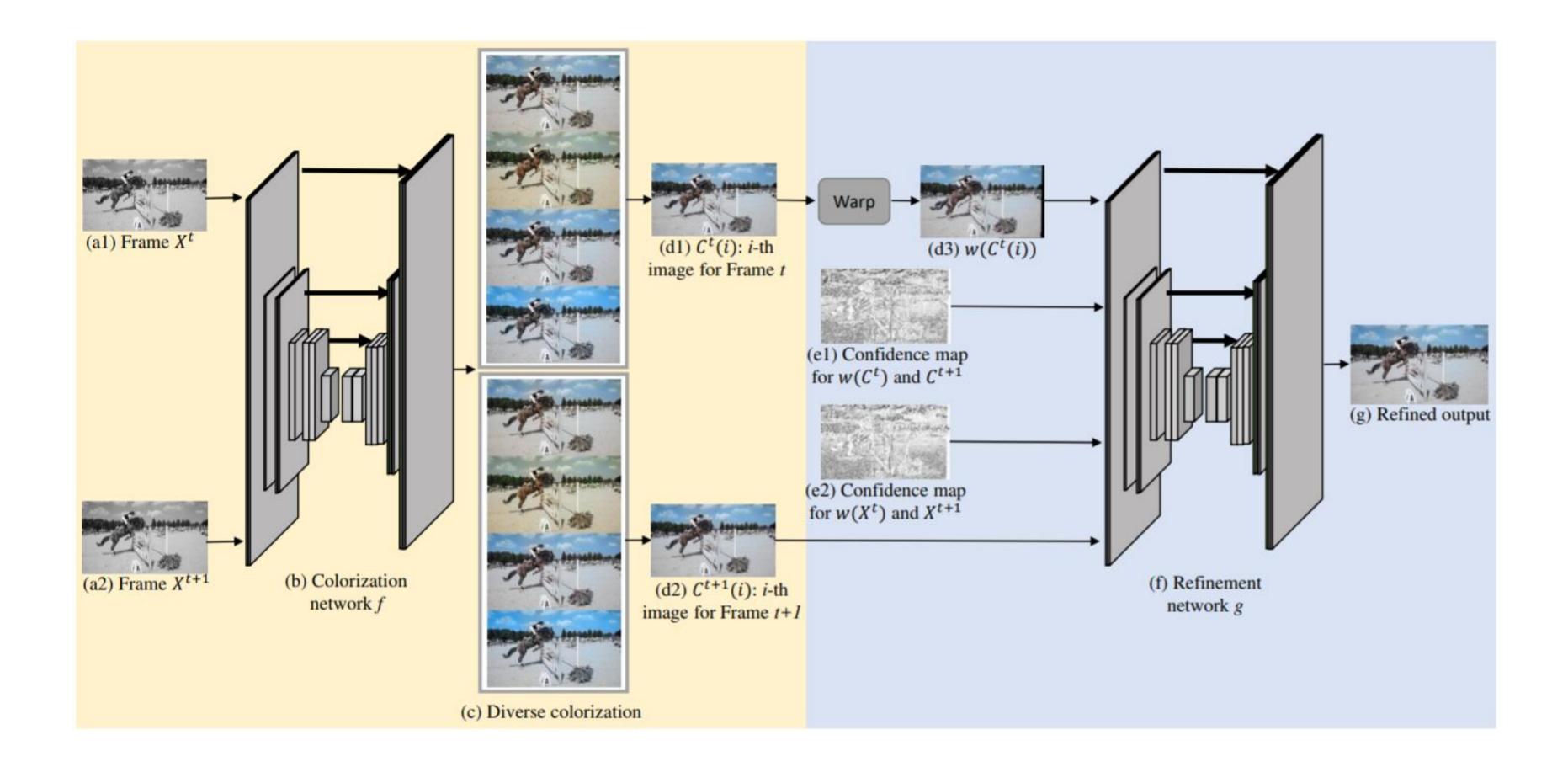
Table 2: Qualitative results of predicting five future frames. \uparrow means the higher the better. \downarrow means the lower the better. "-" means invalid field.

Video Colorization

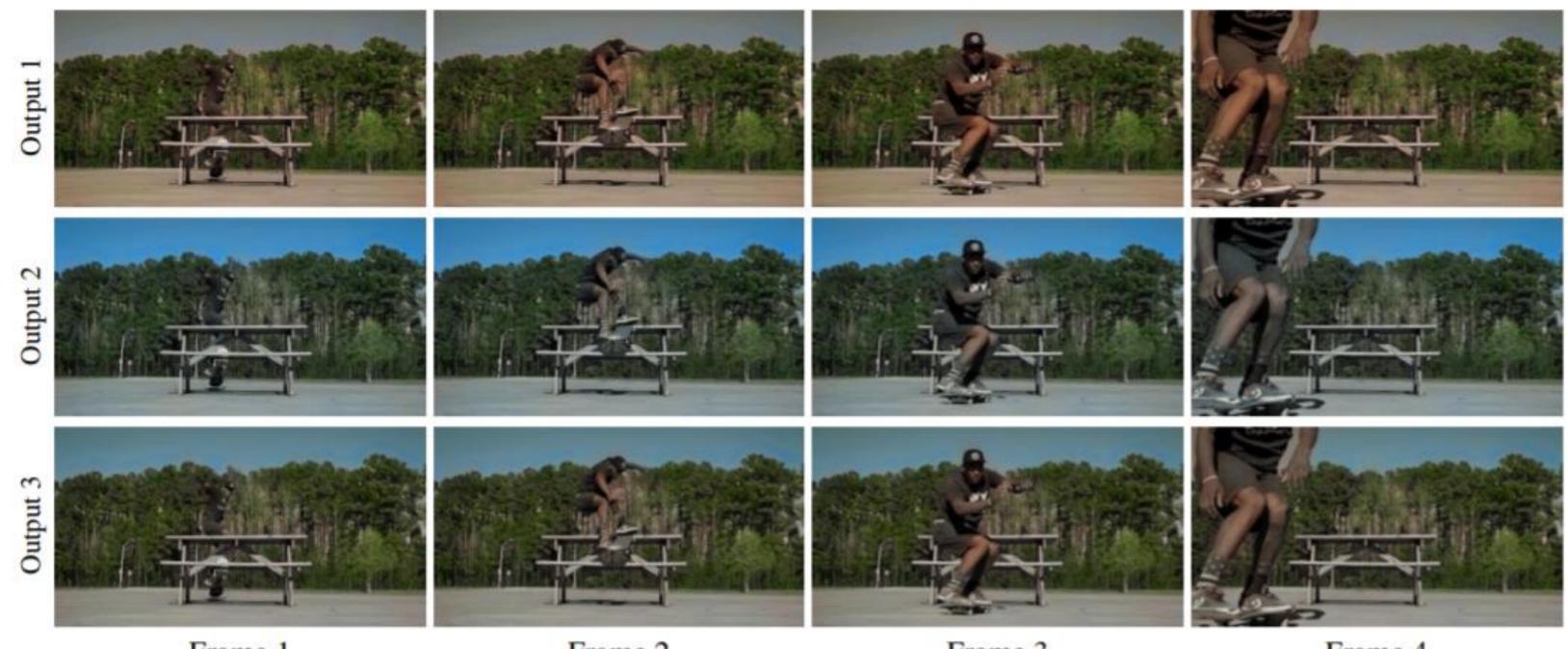
Fully Automatic Video Colorization with Self-Regularization and Diversity

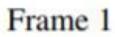
Chenyang Lei Qifeng Chen **CVPR 2019**

Fully Automatic Video Colorization with Self Regularization and Diversity



Diversity





Frame 2

Frame 3

Figure 3. Four frames of three different videos colorized by our approach with diversity. Our approach is able to colorize videos in different ways. In general, different videos exhibit different global styles.

Frame 4

		Preference rate		
Comparison	DAVIS	Videvo	Comparison	DAVIS
Ours > Zhang et al.[32] + BTC [15]	80.0%	88.8%	Ours > Ours without self-reg.	67.9%
Ours > Iizuka et al. [12]+ BTC [15]	72.8%	63.3%	Ours > Ours without diversity	61.5%

video colorization.

Table 1. The results of perceptual user study. Both baselines are enhanced with temporal consistency by BTC [15]. Our model consistently outperforms both state-of-the-art colorization methods by Zhang et al. [32] and Iizuka et al. [12]. Ours > Ours without diversity 61.5% Table 2. The results of the ablation study of comparisons between our full model and ablated models. The evaluation is performed by perceptual user study with 15 participants. The results indicate that self-regularization and diversity are key components in our model to achieve state-of-the-art performance in fully automatic

Thank You

https://cqf.io

