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Material Point Method

• Fluid
• Smoothed-Particle Hydrodynamics

• Grid-based Methods

• Solid
• Finite Element Method

• Finite Difference Method

• Material Point Method
• large deformation, complex topology changes

• multi-material & multiphase coupling

• (self) collision handling



MPM Pipeline Overview
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Performance is the Solution

• “dx gap”
• a gap between adjacent models when colliding

• increase grid resolution => more particles to achieve equal magnitude

• CFL Condition
• for simulation stability and collision handling

• more time steps per frame => more work to compute a frame

• Performance is the key！



Gather (node based) Scatter (particle based)
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Hardware Friendly Solutions

• MLS MPM
• [2018 SIGGRAPH, Hu, et al.] A Moving Least Squares Material Point Method with Displacement 

Discontinuity and Two-Way Rigid Body Coupling

• Async MPM
• [2018 SCA, Fang, et al.] A Temporally Adaptive Material Point Method with Regional Time Stepping

• GVDB
• [2018 EG, Wu, et al.] Fast Fluid Simulations with Sparse Volumes on the GPU

• Warp for Cell
• [2017 GTC, Museth, et al.] Blasting Sand with NVIDIA CUDA: MPM Sand Simulation for VFX

• http://on-demand.gputechconf.com/gtc/2017/video/s7298-ken-museth-blasting-sand-with-nvidia-
cuda-mpm-sand-simulation-for-vfx.mp4

• Bottleneck: Particle-to-Grid Transfer



The Alternative of Transfer
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Comparison

Optimized Scatter

• No auxiliary structures or memory

• Uniform workload for each thread

• Very few ‘atomicAdd’ write conflicts

Gather

• Additional particle list for each grid node

• Divergent workload

• No write-conflicts at all



• vs. FLIP [Gao et al. 2017]
• CPU-based, Gather-style

• ~16X Speed-up

• vs. MLS [Hu et al. 2018]
• CPU-based, Scatter-style

• ~8X Speed-up

• vs. Naïve Scatter
• GPU-based, Scatter-style

• ~10~24X Speed-up

• vs. GVDB [Wu et al. 2018]
• GPU-based, Gather-style

• ~ 7~15X Speed-up

CPU：18-core Intel Xeon Gold 6140, ￥16000
GPU：Nvidia Titan XP,                           ￥8000

Performance Benchmarks



Fundamental Implementation Choices

• Data Structure for Particles
• Arrays in the SoA (Structure of Array) layout

• Data Structure for Space
• Perceptionally a sparse uniform grid

• Support efficient interpolation operations

• GSPGrid vs. GVDB

• Sort
• Radix sort vs. Histogram sort



Performance Factors

• Particle distribution doesn’t matter much

• The number of particles matters
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• When the number of particles is fixed,

• ppc ↑, node ↓, performance ↑



Delayed Ordering Speedup
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Delayed Ordering

• Particle Attributes Classification

• By Perception
• Intrinsics: Mass, Physical Property (Constitutive Model, etc.)

• Extrinsics: Position, Velocity, Deformation Gradient, Affine Velocity Field 
(or Velocity Gradient)

• By Access (Write/ Read) Frequency
• Mass: remains static after initialized, read once per timestep

• Position: maintained after each timestep, 

• Everything else (Velocity, Deformation Gradient, Affine Velocity Field , etc.)



Ordering Strategy
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Ordering Strategy

Particle
Attribute 

(Dimension)

Read Write

arbitrary contiguous arbitrary contiguous

mass (1) 1 1 0 1

position (d) 1 3 0 1+1

velocity (d) 1 1 0 1+1

deformation 
gradient (d*d)

1 1 0 1+1

… … …

Access times per-particle per-timestep

Particle
Attribute 

(Dimension)

Read Write

arbitrary contiguous arbitrary contiguous

mass (1) 1 0 0 0

position (d) 1 3 0 1+1

velocity (d) 1 0 0 1

deformation 
gradient (d*d)

0 1 0 1

… … …

Reorder Everything Delayed Ordering



Delayed Ordering Speedup
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Summary: 

• GPU MPM pipeline
• efficient, extensible, cross-platform

• support multiple-materials 

• https://github.com/kuiwuchn/GPUMPM

• What’s next?
• Multi-GPU MPM

• Distributed GMPM





Collision Detection

• Broad-phase Collision Detection

• Look for AABB bounding box intersections

• Typical memory-bound CUDA kernels!



BVH (Bounding Volume Hierarchy) Construction

• BVH Construction
• [2012 Karras] builds all nodes in parallel 

• [2014 Apetrei] builds & refits in one iteration

• BVH Stackless Traversal
• [2007 Damkjaer] depth-first order traversal

using escape index

Linear BVH built on top of primitives 

sorted by their Morton codes



Stackless BVH Traversal

• BVH Construction
• [2012 Karras] builds all nodes in parallel 

• [2014 Apetrei] builds & refits in one iteration

• BVH Stackless Traversal
• [2007 Damkjaer] depth-first order traversal

using escape index

Depth-first order traversal track 
of Primitive-1 assuming it collides

with all the other primitives



BVH-based Collision Detection

• Full traversal of the internal nodes
• Original BVH 4 2 1 0 3 6 5

• Ordered BVH 0 1 2 3 4 5 6

• How to compute BVH order
• Calculate the LCL-value of each leaf node

• Compute prefix sums of LCL-values

• Assign the indices from LCA from top 
to bottom
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Effectiveness of ordering

• Without ordering

• L2 Cache Hit Rate (L1 Reads)
• 88%

• Global Load L2 Transactions/Access
• 31.7

• Maximum Divergence
• 99.9%

• With ordering

• L2 Cache Hit Rate (L1 Reads)
• 92%

• Global Load L2 Transactions/Access
• 23.4

• Maximum Divergence
• 65.7%

• The overhead of histogram sort is low (~1ms)2~3x speedup !



Thanks!

https://github.com/littlemine
Xinlei Wang, 王鑫磊

https://github.com/littlemine


GPU Execution Model

https://www.3dgep.com/cuda-thread-execution-model/



Other Useful Engineering Tips

• For Performance:
• SoA memory layout

• Per-material computation, separate material properties from particle 
attributes

• For Code Reusability:
• Entity-Component System

• Particle extrinsics formulation relies on certain components (MLS/non-MLS, 
PIC/FLIP/APIC)

• Functional Programming
• Implicit Time Integration involves lots of similar grid operations

• Transfer schemes can be formulated by various submodules (kernel, transfer method)

• Easier to make task parallel


