
GPU Optimizations of
Material Point Method and

Collision Detection

Xinlei Wang, 王鑫磊

浙江大学

Material Point Method

• Fluid
• Smoothed-Particle Hydrodynamics

• Grid-based Methods

• Solid
• Finite Element Method

• Finite Difference Method

• Material Point Method
• large deformation, complex topology changes

• multi-material & multiphase coupling

• (self) collision handling

MPM Pipeline Overview

𝑚𝑝
𝑛 𝑣𝑝

𝑛 𝑥𝑝
𝑛 𝑚𝑖

𝑛 𝑝𝑖
𝑛

𝑣𝑖
𝑛+1

particle to grid

𝑣𝑝
𝑛+1 𝐹𝑝

𝑛+1
grid to particle

𝑥𝑝
𝑛+1

advection

transfer

time
integration

Maintain
Structures

•Particle: Sort & Order

•Sparse Grid: Generate Sparse Blocks

•Particle – Grid Mapping

Rasterize

•Material Stress Computation

•Particle-to-Grid Transfer (mass,
momentum, etc.)

Time
Integration

•Explicit: 𝑣𝑖
𝑛+1 = (𝑝𝑖

𝑛 + 𝛿𝑡 ∗ 𝑓𝑒𝑥𝑡)/𝑚𝑖
𝑛

•Implicit: Solve for 𝑣𝑖
𝑛+1

Resample
•Grid-to-Particle Transfer (velocity)

Advection

•Update Particle Attributes (position,
deformation gradient, etc)

Lagrangian
material paticles

Eulerian
Cartesian grids

explicit implicit

Up to 90%

Performance is the Solution

• “dx gap”
• a gap between adjacent models when colliding

• increase grid resolution => more particles to achieve equal magnitude

• CFL Condition
• for simulation stability and collision handling

• more time steps per frame => more work to compute a frame

• Performance is the key！

Gather (node based) Scatter (particle based)

n

n+1

n+2

n+4

notation

grid node particle

0

1 2 3 4

5 6

7

transfer

0

1

2

3

4

5

6

7

n

n+1

n+2

n+3

Hardware Friendly Solutions

• MLS MPM
• [2018 SIGGRAPH, Hu, et al.] A Moving Least Squares Material Point Method with Displacement

Discontinuity and Two-Way Rigid Body Coupling

• Async MPM
• [2018 SCA, Fang, et al.] A Temporally Adaptive Material Point Method with Regional Time Stepping

• GVDB
• [2018 EG, Wu, et al.] Fast Fluid Simulations with Sparse Volumes on the GPU

• Warp for Cell
• [2017 GTC, Museth, et al.] Blasting Sand with NVIDIA CUDA: MPM Sand Simulation for VFX

• http://on-demand.gputechconf.com/gtc/2017/video/s7298-ken-museth-blasting-sand-with-nvidia-
cuda-mpm-sand-simulation-for-vfx.mp4

• Bottleneck: Particle-to-Grid Transfer

The Alternative of Transfer

region
0

region 1 region 2 region 3

iteration 0, stride 1

iteration 1, stride 2

node
n

node
n+1

node
n+2

node
n+3

shared memory

ballot
clz

shfl

warp intrinsics

Comparison

Optimized Scatter

• No auxiliary structures or memory

• Uniform workload for each thread

• Very few ‘atomicAdd’ write conflicts

Gather

• Additional particle list for each grid node

• Divergent workload

• No write-conflicts at all

• vs. FLIP [Gao et al. 2017]
• CPU-based, Gather-style

• ~16X Speed-up

• vs. MLS [Hu et al. 2018]
• CPU-based, Scatter-style

• ~8X Speed-up

• vs. Naïve Scatter
• GPU-based, Scatter-style

• ~10~24X Speed-up

• vs. GVDB [Wu et al. 2018]
• GPU-based, Gather-style

• ~ 7~15X Speed-up

CPU：18-core Intel Xeon Gold 6140, ￥16000
GPU：Nvidia Titan XP, ￥8000

Performance Benchmarks

Fundamental Implementation Choices

• Data Structure for Particles
• Arrays in the SoA (Structure of Array) layout

• Data Structure for Space
• Perceptionally a sparse uniform grid

• Support efficient interpolation operations

• GSPGrid vs. GVDB

• Sort
• Radix sort vs. Histogram sort

Performance Factors

• Particle distribution doesn’t matter much

• The number of particles matters

0

5

10

15

20

Gaussian_μ=10 Uniform_μ=10 Gaussian_μ=18 Uniform_μ=18

Mapping Stress P2G G2P Re-Sorting

m

s

• When the number of particles is fixed,

• ppc ↑, node ↓, performance ↑

Delayed Ordering Speedup

0

2

4

6

8

10

Reorder No Reorder

Mapping Stress P2G Solver G2P Sorting Others

Delayed Ordering

• Particle Attributes Classification

• By Perception
• Intrinsics: Mass, Physical Property (Constitutive Model, etc.)

• Extrinsics: Position, Velocity, Deformation Gradient, Affine Velocity Field
(or Velocity Gradient)

• By Access (Write/ Read) Frequency
• Mass: remains static after initialized, read once per timestep

• Position: maintained after each timestep,

• Everything else (Velocity, Deformation Gradient, Affine Velocity Field , etc.)

Ordering Strategy

3 1 5 4 0 2 7 6

7 1 6 4 5 2 0 3

particle index

step n

step n+1

𝑚0
𝑛 𝑚1

𝑛 𝑚2
𝑛 𝑚3

𝑛 𝑚4
𝑛 𝑚5

𝑛 𝑚6
𝑛 𝑚7

𝑛

𝑣3
𝑛 𝑣4

𝑛 𝑣1
𝑛 𝑣2

𝑛 𝑣6
𝑛 𝑣0

𝑛 𝑣7
𝑛 𝑣5

𝑛

𝑥3
𝑛 𝑥1

𝑛 𝑥5
𝑛 𝑥4

𝑛 𝑥0
𝑛 𝑥2

𝑛 𝑥7
𝑛 𝑥6

𝑛

𝑚0
𝑛 𝑚1

𝑛 𝑚2
𝑛 𝑚3

𝑛 𝑚4
𝑛 𝑚5

𝑛 𝑚6
𝑛 𝑚7

𝑛

𝑣3
𝑛 𝑣1

𝑛 𝑣5
𝑛 𝑣4

𝑛 𝑣0
𝑛 𝑣2

𝑛 𝑣7
𝑛 𝑣6

𝑛

𝑥7
𝑛 𝑥1

𝑛 𝑥6
𝑛 𝑥4

𝑛 𝑥5
𝑛 𝑥2

𝑛 𝑥0
𝑛 𝑥3

𝑛

3 4 1 2 6 0 7 5 step n-1

𝑚0
𝑛 𝑚1

𝑛 𝑚2
𝑛 𝑚3

𝑛 𝑚4
𝑛 𝑚5

𝑛 𝑚6
𝑛 𝑚7

𝑛

𝑥3
𝑛 𝑥4

𝑛 𝑥1
𝑛 𝑥2

𝑛 𝑥6
𝑛 𝑥0

𝑛 𝑥7
𝑛 𝑥5

𝑛

particle attribute

Ordering Strategy

Particle
Attribute

(Dimension)

Read Write

arbitrary contiguous arbitrary contiguous

mass (1) 1 1 0 1

position (d) 1 3 0 1+1

velocity (d) 1 1 0 1+1

deformation
gradient (d*d)

1 1 0 1+1

… … …

Access times per-particle per-timestep

Particle
Attribute

(Dimension)

Read Write

arbitrary contiguous arbitrary contiguous

mass (1) 1 0 0 0

position (d) 1 3 0 1+1

velocity (d) 1 0 0 1

deformation
gradient (d*d)

0 1 0 1

… … …

Reorder Everything Delayed Ordering

Delayed Ordering Speedup

0

2

4

6

8

10

Reorder No Reorder

Mapping Stress P2G Solver G2P Sorting Others

Summary:

• GPU MPM pipeline
• efficient, extensible, cross-platform

• support multiple-materials

• https://github.com/kuiwuchn/GPUMPM

• What’s next?
• Multi-GPU MPM

• Distributed GMPM

Collision Detection

• Broad-phase Collision Detection

• Look for AABB bounding box intersections

• Typical memory-bound CUDA kernels!

BVH (Bounding Volume Hierarchy) Construction

• BVH Construction
• [2012 Karras] builds all nodes in parallel

• [2014 Apetrei] builds & refits in one iteration

• BVH Stackless Traversal
• [2007 Damkjaer] depth-first order traversal

using escape index

Linear BVH built on top of primitives

sorted by their Morton codes

Stackless BVH Traversal

• BVH Construction
• [2012 Karras] builds all nodes in parallel

• [2014 Apetrei] builds & refits in one iteration

• BVH Stackless Traversal
• [2007 Damkjaer] depth-first order traversal

using escape index

Depth-first order traversal track
of Primitive-1 assuming it collides

with all the other primitives

BVH-based Collision Detection

• Full traversal of the internal nodes
• Original BVH 4 2 1 0 3 6 5

• Ordered BVH 0 1 2 3 4 5 6

• How to compute BVH order
• Calculate the LCL-value of each leaf node

• Compute prefix sums of LCL-values

• Assign the indices from LCA from top
to bottom

4

2

6

0

0 1

3

3 4

5

5 6 72

1

0

1

5

3

0 1

4

3 4

6

5 6 72

2

Sort

Effectiveness of ordering

• Without ordering

• L2 Cache Hit Rate (L1 Reads)
• 88%

• Global Load L2 Transactions/Access
• 31.7

• Maximum Divergence
• 99.9%

• With ordering

• L2 Cache Hit Rate (L1 Reads)
• 92%

• Global Load L2 Transactions/Access
• 23.4

• Maximum Divergence
• 65.7%

• The overhead of histogram sort is low (~1ms)2~3x speedup !

Thanks!

https://github.com/littlemine
Xinlei Wang, 王鑫磊

https://github.com/littlemine

GPU Execution Model

https://www.3dgep.com/cuda-thread-execution-model/

Other Useful Engineering Tips

• For Performance:
• SoA memory layout

• Per-material computation, separate material properties from particle
attributes

• For Code Reusability:
• Entity-Component System

• Particle extrinsics formulation relies on certain components (MLS/non-MLS,
PIC/FLIP/APIC)

• Functional Programming
• Implicit Time Integration involves lots of similar grid operations

• Transfer schemes can be formulated by various submodules (kernel, transfer method)

• Easier to make task parallel

