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Intended Takeaway from this Talk...

 For Rookies...

* Basic idea of a deformable body simulation pipeline
* What is Position Based Dynamics (PBD)
* How to implement the basic building blocks of PBD

* For Veterans...
* A physically correct understanding of PBD
* |Insights and potential improvements of PBD
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Abstract

popular approaches for the
and external forces are ac

systems in computer grap
malated from which accelerations are computed based on Newion's second law of

AGEIA

cs are force based. Internal

maion. A time integrasion method is then wsed to update the velocities and finally the positions of the object.
A few simulation methods (most rigid body simulators) use {mpulse based dynamics and directly manipulate

velocities. In this paper

on the positions. The main a

we present an approach which omits the velocity layer as well and immediately work:
antage of a position based approach is its controilabiliry. Overshoating problems

of explicit integration schemes in force based systems can be avoided. In addition, collision constrain;
handled easily and penetrations can be resolved completely by projecting points 10 valid locations. We have used
the approach 10 build a real rime cloth simulator which is part of a physics software library for games. This
application demonstrates the sirengths and bencfits of the method,

Categories and Subject Descriptons (according 1o ACM CCS): 13§ [Computer Graphics): Computational Geometry

and Object ModelingPhysically
RealismAnimation and Virtual Reality

Bused Modeling: 137 [Computer Graphics): Theee-

ensional Graphies and

1. Introduction

Research in the field of physically based animation in com
puter graphics is concerned with finding new methods for
the simlation of physical phenomena such as the dynamics.
of rigid bodics, deformable objects or fluid flow. In contra

to computational sciences where the main focus is on accu.

. the main issues bere are stability, robustness and speed
while the results should remain visually plausible. There.

fore, existing methods from computationsl

be adopted one to onc. In fact, the main justification for
doing research on physically based simulation in computer
graphics is to come up with specialized methods, tailored to
the particular needs in the feld. The method we present falls
into this category

ences can not

The traditional approach to simulating dynamic objects
has been to work with forces. At the beginning of cach time
step, internal and external forces are sccumulated. Examples
of internal forces are elastic forces in deformable objects or
viscosity and pressure forces in fuids. Gravity and collision
forces are examples of external forces. Newton’s second law
of motion relates forces to accelerations via the mass. So us-

ing the density or lumped masses of vertices, the forces
transformed info accelerations. Any time integration sche
can then be used to first compute the velocities from the
\r!emlk)m and then the positions from the velocities. Sc

5 use impulses instead of forces to control the
imation. Because impulses directly change velociics,
level of integration can be skipped.

In computer graphics and especially in computer
it is often desirable 1o have direct control over po
objects o vertices of a mesh. The user might want 10 att
a vertex 10 a kinematic object or make sure the vertex alw
stays outside a colliding object. The method we propose b
works directly on positions which mkes such masip:
In addition, with the position based apprach
possible 0 coatrol the integration directly thereby avoid
overshooting and energy gain problems in coanection ¥
explicit integration. So the main features and advantage
panition hased dynamics are

tions easy

 Position based simlation gives coatrol over explicit i
‘gration and removes the typical instability problems.

[Muller et al. 2007]
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Figure 1: In this example, we see the rﬂru «»ﬂ hanging the relative stiffness of volume conservation and siretch and shear constraints on a

defarmable bods. Unlike traditional P!
count independent manner. greatly ;.m,.l

ing asses creation.

Abstract

We address the long-standing problem of iteration count and
time step dependent coastraint stiffness in position-based dynamics
(PBD). We introduce a simple extension 1o PBD) that allows t

sers to control the ies in  time step and iteration

simulation [Bender et al. 2014b). Specifically, constraints become
arbitrarily stiff as the iteration count increases, or as the time step
decreases. This coupling of parameters is particularly problematic
when creating scenes with a variety of material types, e.g: soft
Sl ket widh ey cgid bosbes & In this scenario, raising

accurately and efficiently simulate
encrgy potentials in an implicit manner. In addition, our method
provides constraint force estimates, making it applicable 1o 3 wider
range of applications. such as those requiring haptic user-feedback.
We compare our algorithm to mare expensive non-lincar solvers
and find it produces visually similar results while maintaining the

simplicity and robustaess of the PBD method.

Keywords: physics simulation, constrained dynamics, position
based dynamics.

obin ect may
g the behavior of all other objects in e simulaion. Thsofen
oxeios 2iffoos cxaficlonts o Vo e gotally, mking the
creation of reusable simulation ussets extremely difficult. Tteration
couat dopeaddace s slo & roblam eves 8 o cameof  singht i,
for example, setting the relative stiffess of stretch and bending
constraints in 4 cloth model. To make matters worse, the effects of
iteration count are non-linear, making it difficult 1o intuitively adjust
parameters, or to simply rescale stiffness values as 3 simple function
of iteration count.

0 the need for

Concepts: +Computing — Real g
Interactive simulation;

1 Introduction

Position-Based Dynamics [Miller ex al. 2007 is a popular method
for the real-time simulation of deformable bodies in games and

of games, in film and medical simulation applications.

As its popularity has increased. the limitations of PBD have be-
come more problematic. One well known limitation is that PBD's
behavior is dependent on the time step and iteration count of the

Pormimion o makn el o bacd copios of sl o put o s wnk Fox

= e diswedfo ot commercel .hm..x ol bt
this notice and the full citation on the first page. Copyrights for i
of this woek owned by ochers than e i

i cult i permici. T copy oherwin, o spablth.bo o 0 perver
or 10 redistribute 1o lists, requires prior specific permission snd/or s fec.
Request permissions froe permissions @ scm.org. © 2016 Copyright held by
the ownerfauthoris). Publication rights licensed to ACM.

MIG ' 16.. October 10 - 12,2016, Burlingame. CA. USA

ISBN: 078-14503-4592-7/16/10

DO hipe/fdxdoi.ong/ 10,1 14872994258, 2994272

higher fidelity and more pnumu, leplvv:n\auvr o

lations, At the same time, the wide-spread use of haptic feedboc!

devices requiv mehod e can provide scceais e Setinaies.

PBD does not have a well defined conceps of constraint force, and
been fimited to applications where accuracy

is Jess important than speed, and where simulations are secondary

effects.

In this paper we present our extended position-based dynamics
(XPBD) algorithm. Our method addresses the problems of teration
and time step dependent siffess by inrod: new constraint
formulation that corresponds to & well-defined concept of elastic
potential energy. We derive our method from an implicit time dis-
cretization tha introduces the concept of a total Lagrange multiplicr
t0 PBD. This provides constraint force estimaes that can be used to
drive force dependent effects and devices.

To summarize, our main coatributions are:

« Extending PBD constraints 10 have a direct correspondence to
well-defined elastic and dissipation energy potentials.

« Introducing the concept of 4 total Lagrange multiplier 1o PBD

allowing us to solve constraints in a time step and iteration
count independent manner.

+ Validation of our algorithm against a reference implicit time
siepping scheme hased on a non-lincar Newion solver.

[Macklin

et al. 2016]

Efficient Simulation of Inextensible Cloth

Rony Goldenthal'* David Harmon'

I Columbia University

Abstract

Many textiles do not noticeably stretch under their own weight
Unfortunately. foe better performance many cloth solvers disregand
this fact. We propose a method to obtain very low strain along the
warp and weft direction using Constrained Lagrangian Mechanics
and 3 novel fast projection method. The resulting algorithm acts as
a velocity filter that casily integrates into existing simulation code.

137 [Computer Graphics): Three-Dimensional
Realism—Animation L6.5 [Simulation and Model-
lation—Animation

Grs
ing

Keywords:  Physically-based Modeling. Cloth simulation, Con.
ped Lagrangian Mechanics, Constraiats, Streiching, Inextensi-
bility, Isometry

1 Introduction

Our eyes are very sensitive to the behavior of fabrics, to the extent
that we can identify the kind of fabric simply from its shape and
motion [Griffiths and Kulke 2002). On iportant fact is that most
do not stretch under their own weight. Unfortunately, for
many popular cloth solvers, a reduction of permissible stretching is
synonymous with degradation in pecformance: for tractable simu-
ltion times one may settle for an unrealistic 10% o more strain
(compare 1% and 10%, Figuee 1). Our work alleviates this prob-
m by introducing a numerical sofver that excels at timestepping
quasi-inextensible surfuces (stretching below 1%).

The solver builds on a framework of Constrained Lagrangian Me-
‘chanics (CLM) [Marsden 1999]. Warp and weft, the perpendicular
e of s i ks wp e, e prkitiedfrom secling
by cnforcag comtrain Squaion, o by ncgrating prin forer
numerical evidence supporting the observation that 4
contimintbased mothod is mrmmv,\ well-suited to operate in the
quasi-inextensible regime. In contrast, for this rgime spring-based
methods are known o experience 4 range of difficuliies, leading ©
the adoption of various strain limiting [Provot 1995 and strain rate
limiting algorithms.

We pres

motivated by the work of Bridson ¢ al. [2002], who viewed
strain limiting as one of multiple velocity filtering passes (another
being collision handling). The velocity fillee paradigm enables the
design of modular systems with mix-and-maich flexibility

Raanan Fattal®

*The Hebrew University of Jerusalem

Michel Bercovier' Eitan Grinspus

*University of California. Berkeley

E=EN

Py 1 Leportate of agauiag semibty Rie eincs
many simulation methods allow \0% or more sirain, whereas many
Jabric do ot wisibly srich, & o patch,pined af o comere
I apars, is aliowed 10 relax under gravify. We compare (left 1o
right) three simulations of progressively smaller permissible strain
with an actual denim patc

Contributions  We propose a novel CLM formulation that is im-
plicit on the constraint gradient (i4.1). We prove that the impl
method's ponlinear equations correspond 1o 4 minimizai
lem (14.2): this result motivates a fast projecti
foreing inextensibility (54.3). We describe an i
fast projection as a simple and efficieat veloc
framevvork that decoupls timcsteppin, inecasbl
). Camecqeny.the fs projcion
dampi

g and collision

ine wwuw\ witha
modet, 1 yield acoekeaied performance (35)

Before discussing these contributions, we summarize the relevant
literature (§2) and describe the basic discrete cloth model (53).

2 Related Work

For brevity, we review work on stretch resistance; for broad surveys
‘oncloth simulation see [House and Breen 2000; Choi and Ko 2005]

The most general appeoach is 10 treat cloth as an elastic material
[Terzopoulos ct al. 1987; Breen et al. 1994; Eberhardt et al. 1996;
Baraff and Witkin 1998; Choi and Ko 2002]. To reduce visible
stretching, elastic models fypically adopt lange clastic moduli or
Sff springs, degrading numerical sability (Hauh et al. 2003)

To address the stiffoess of the resuling differential equations,
Bl snd Wikl 119981 ropored implc imegsaion. allowieg
fo b, bl timvipe; adpte timseppin was reqied
prcvet orersieching,  Eborhandt 2000] and Bone
al. T2003] adopeed mplcicxpici (IMEX) formulations, which
treal only a subset of forcex implicitly. Our method fs closely re
laed to the IMEX approach, in the sense that stretching forces are
singled out for special treatment,

These works, and many of their sequels, improved performance
by allowing some perceptible stretch of the fabric. In the quasi:
inextensible regime, however, implicit methods encounter mumer
cal limitations [Volino and Magnenat-Thalmann 2001: Boxerman
2003; Hauth et al. 2003}: the condition number of the implicit
systern grows with the elastic material siffiess, forcing iterative
solvers to perform many iteeations; ad

‘goeithms such as Backward Euler and
‘umerical damping when the system is stff [Boxerman 2003).

[Goldenthal et al. 2007]
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Figure 1: Our method step size for
coupled with other types of objects. Bows. st 3D,

subject to high tensile forces, isiated or

frame, 1D inextensible string, ngld armw ; 7mmwhni Soft lateral springs, inextensible

textile; Knee: complex assembly of rigid bodies and stif wunilateral springs ; Ragdoll: rgid body assemibly.

Abstract

We present a unification of the two main approaches to sim-
ulate deformable solids, namely elastcity and constraints.

ently handle high stifiness, but when integrated
In time they can il from istabilite in the sulipace

rections, generating spurious transverse vibrations when
pu“mg hard on thin inextensible objects or articulated rigid
bodies. We show that geometric stiffness, the tensor encoding
the change of intensi

simulation, and some compliance can be introduced in the

obtained through Un-
bt ly, when the constraint ﬁvy\n are lange, constraint-
d objects are prone to instabilities in the transverse, un-

contiraed dlrechora. This oerirs whan puling hard e i
extensible strings and sheets, or on chains of articulated bod-
ios. The spurious vibrations can lead to unrealistic behaviors
or even simulation divergence. They can be avoided using
small time steps or complex non-linear solvers, however this
dramatically slows down the simulation, while many appli-
eitons especially in interactive simulation, hardly .\n.m for
r fram,

e

spanse to a change of positions, is the missing piece between

the two approaches. This previously neglected stifiness term

is easy to implement and dramatically improves the stability
bjects and articulated chats, without add

This allows P P
several onders of magnitude using standard linear solvers.

CR Categories: 135 [Computer Graphics]: Computational
Geometry and Object Mmielm,.—[vhmauv based model-
ing] 137 [Computor Graphics}: Three-Dimensional Graphics
and Realism—{ Animation]

ywords: Physically based animation, Simulation, Dynam-
ics, Constraints, Continuum mechanics, Geometric Stiffness

1 Introduction

Constraint-based slmnl.mun is very popular for Amplemel\k
ing joints in articulated ri to enforce

ity in somme divections. e D SR St s
bles or cloth. Its mathematical formulation makes it numer-
ically robust to infinite stiffness, contrary to elasticity-based

e only
bo maintained by laxing inextanaibiity, or seing implich
elastic bending forces, however this changes the constitutive
law of the simulated cbjects.

In this work, we show how to perform stable and efficient
simulations of both extensible and inextensible constraint-
based objects subject o high tensile forces. The key to trans-
verse stability lios in the geometric stifness, a first-order ap-
proximation of the change of direction of the intemnal forces.
due to station or bending, Neglcting the geometrc sifi-
ness, as usually done in constraint-based simulation, is a sim-
plification of the linearized equation system, which in turn is.
a simplification of the exact, non-linear implicit integration.
In case of thin objects, this leaves the transverse directions
leading to t

integration, introducing artificial potential energy. While this
is acceptable for small stiffnesses or short time steps, this may
introduce instabilities in the other cases. In this paper, we
show that solving the complete linear equation allows high
stiffnesses and large time steps which were only achievable
using much slower non-linear solvers before. We show how
to handle the geometric stifness in a numerically stable way;
even for very large material stiffness. The implementation is
easy to combine with existing implicit solvers, and can pro-
vide several orders of magnitude speed-ups. Moreover, it al-
lows a unification of rigid body and continuum mechanics.

In the next section, we detail our background and motiva-
tion through an introductory example. The principle of our
‘method is then explained in Section 3. Its application to a
wide varity o cases i than preserled in Section 4. We con
clude and sketch future work in Section

[Tournier et al. 2015]




Computer Graphics (Past and Now)

1986



Deformable Body Simulation

Game



Deformable Body Simulation

Movie/Animation



Deformable Body Simulation




Rigid Body V.S. Deformable Body




Deformable Body Simulation

[F———

[Liu et al. 2017]
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Spatial Discretization




Representation of a Deformable Body

1
E(xq1,x5) = Ek(”xl — X5|| — lo)z



Representation of a Deformable Body

ALY

1
W(F(x)) = plle(P)ll7 + > Atr®(e(F))

L

EnerPebnsition  Strain Tensor
Gradient

13



Elastic Energy

Deformed Pose Rest Pose
E(x) >0 E(x)=0



Temporal Discretization

l | | | | | | |
| | | | | | | |
xo h le le+1



Newton’s 2"9 Law of Motion

v(t)dt
- (fmt (x(t)) + fext)dt

*Xny1 = Xn T,

TL

'vn+1=Vn+J

a(t)



Time integration: Implicit Euler

* Xp+1 = Xp + AV
*VUny1 = Up + hM_l(fint(xn+1) T fext)

* Xpnt1 = Xp + hvy + th_lfext + th_lfint(xn+1)

— _/
Y

y

17



Variational Implicit Euler

. 1
" Xn+1 = Argming -5 lx = yllm + E(x)
g — =

inertia elasticity

* Pick your favorite optimization tool to solve
e Gradient Descent / Newton / Quasi-Newton etc...



Deformable Body Simulation

[F———

[Liu et al. 2017]
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State-of-the-Art Real-time Simulators

NVIDIA FleX



State-of-the-Art Real-time Simulators

@ [ Y ¢ "
Maya nDynamics
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Position Based Dynamics

11 — x|

C(xllxz) — l
0

Goal: c(x{,x,) =0

23



PBD: Pipeline

(5) forall vertices i do v; < v; + Arwif.;(X;) _

(6) dampVelocities(vy,...,vy) (nit 2 r—1
(7) forall vertices i do p; < x; + Atv; nt1 = X+ AU+ REMT fox
(8) forall vertices i do generateCollisionConstraints(x; — p;)

(9) loop solverlterations times

(10) projectConstraints(Cy, ...,Cyv+m, ;s P1s-- - PN)

(11) endloop

(12) forall vertices i

(13) vi — (pi —x;) /At

(14) Xj < P;

(15) endfor

(16) velocityUpdate(vy,...,vy)

24



PBD: Pipeline (lllustrated version)

Xn+1 = )Y

25



PBD: Projection

* Find a projection direction 6x to:
o Satisfy c(x + 6x) = c(x) + Ve(x)dx = 0
* Conserve linear momentum: Xm;ox; = 0
* Conserve angular momentum: Xm;x; X ox; = 0



PBD: Projection (Cont’d)

* Construct 0x; for the j-th constraint as:
° = — ,_1 T .
oxj = —M; “Vc¢; 04,

* Compute the step size §4; using ¢;j(x) + V¢;jéx; =0
¢ 51 = —2

M lp-T
Vc]M] Vc]




PBD Projection Example

6x1 5x2

X1 I I X9

Lo

— 10 —)T 1 (x; — )T

C:||X1 XZ||_1 Ve = _( 1 2) ,__( 1 2) leml
Lo lo |1 — x|l lo |1 — x| 0

C lo
oA — (llx1 — 22l = Ip)

T VeM-Ve mi;! + m;

0
m;

|1



PBD Projection Example

Sx = —-M"1vcTsa

Lo mq = X1 — X2
0x, = ——— — (llxq — 221l = Ip)
‘m11+m21 Lo |[xqy — x|

_1 B
ms X1 — X2
~ (||x1 — x| — lo) —
21 lo ] 1 — x|

Lo
m;t+m

5x2=_

29



PBD Projection Example

6.7(,'1 5.7(,'2
> -+
O N O
X1 I I X9
Lo
—1
X1 — X2
§x; = —————=(llxy — 2511 — I)
m;t +m;t 261 — x|
—1
m, X1 — X2
O0x, = +—— — (llxq — x5l = 1o)
m;t +m;?! 261 — x|



PBD: Pipeline

(5)
(6)
(7)
(8)
)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

forall vertices i do v; < v; + Arwif,; (X;)
dampVelocities(vy,...,vy)
forall vertices i do p; < x; + Atv;
forall vertices i do generateCollisionConstraints(x; — p;)
Jolverlterations times
projectConstraints(Cy, ...,Cyv+m, ;s P1s-- - PN)
endloop
forall vertices i
Vi — (pi —x;) /At
Xi — Pi
endfor
velocityUpdate(vy,...,vy)

31



lteration Strategy: Gauss-Seidel v.s. Jacobi



Gauss-Seidel



Gauss-Seidel




Gauss-Seidel




Gauss-Seidel




Gauss-Seidel




Jacobi

/NN



Gauss-Seidel v.s. Jacobi

* Gauss-Seidel
+ Converges faster
- Hard to parallelize
- May break the symmetry

* Jacobi
+ Easy to parallelize
- Converges slower
- Less stable

-- Colored GS [Fratarcangeli et al. 2016]

-- Symmetric GS

-- Chebyshev Acceleration [Wang 2015]

-- Under Relaxation

39



Problems

PBD (6 iterations) PBD {29 iterations)
S msfframe 25 ms/frame
PBD (58 iterations) PBD (117 iterations)
50 ms/frame 100 ms/frame

>

40



Conclusion

* Position Based Dynamics is:
* Fast
* Simple to implement
» Stable (for most cases)

* It was also considered:
* Non-physically-based (stiffness related to iteration count)
* Hard to control



Variational Implicit Euler

. 1
" Xn+1 = Argming -5 lx = yllm + E(x)
g — =

inertia elasticity

* What if E(x) is (almost) infinitely stiff?



Constraint-based Variational Implicit Euler

.1 2 B
min lx —ylly”~ s.t.c(x) =0

N

X1 %

X1 | ' X2




Constraint-based Variational Implicit Euler

.1 2 B
min lx —ylly”~ s.t.c(x) =0

e Optimality Condition:
M
. ﬁ(x — )+ Vc(x)'A=0
c(x)=0



Compliant Constraints

* Re-define energy using constraints:
1
* E(x) = Zq pici(x)? = %c(x)TKc(x) = Ec(x)Ta_lc(x)

/K = a‘\‘

Stiffness Matrix Compliance Matrix



Variational Implicit Euler with compliant
constraints

.1 oy o2 o1 T -1
+ min o llx =yl +2eCoTate(x)

* Optimality Condition
¢ S (=) + Ve @) e(x)| = 0

» Optimality Condition with A = a~1c(x)
* 3z (=) + (@72 =0
. c(x)—al=0




r

Numerical Solutions

\_

M
ﬁ(x -+ Vc(x)fA=0
c(x)—al =0

\

J

 To achieve the exact solution
* Newton-Raphson

* To achieve an approximated solution

» Step-and-Project [Goldenthal et al. 2007]
* Semi-Implicit Euler [Tournier et al. 2015]

* Position Based Dynamics [Miller et al. 2007, Macklin et al. 2016]

47



4 )

Newton-Raphson method | M, ivewri=o

2
c(x)—al =0
g J

* For a given state x(¥) and 1(®)
 Compute Newton-Raphson direction dx and 64 using:

— — | h?

‘v _
2 A(R)Vzc] Vel | [6x — (™ —y) + 7,2
: 0 c(x) — @a®

Vc —




Hard Constraints

ca=20

4 )
M
—(x—=—y)+Vc(x)'A=0

2
c(x)=0
\_ J

4 )
M T
ﬁ(x —v)+ Vc(x)'2=0
c(x)—al =0
\ J
4 N
: 2
mxlrlmﬂx — Vlln
s.t.c(x) =0
. Y,

49



Hard Constraints: Geometric Interpretation

: 2
mxlrlmﬂx — Vlln
s.t.c(x) =0

50



Step and Project (SAP)
|Goldenthal et al. 2007]

y
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Step and Project (SAP)

|Goldenthal et al. 2007]

-
: 2
mxmz_hzllx —yllm
s.t.c(x) =0
g

\_

1
Xje+1 = Mo Ix - x(k)”,zw

s.t.c(x®) + Ve (x¥)(x — x®) =0

52



SAP: Update

-

M
ﬁ(x —x() + ch(x(k))T/’l =0

C(x(k)) + VxC(x(k))(x _ x(k)) 0
\_

N\

J .

Initialize x¥*1) gnd A(k+1)
with x%) and 0

~N

M /h? VCT]
Ve 0

0X _
oA

- [c(x()(kbl

Schur Complement of 0: —Vc¢ (M/h?)~1VcT

[—Vc (M/R?) ™10 cT)6A = —c(x )



SAP: Update

-

\_

M )
ﬁ(x —x() + ch(x(k))T/’l =0

c(x®) + Ze(x®y(x —x®) =0

-

J .

Initialize x¥*1) gnd A(k+1)
with x®) and 0

~N

M/h* V| [0x] _
Vc 0 1104

-

Sx = —h*M~1vctéa

o

- [c(x()(kbl

1 _
oA = 2 (Ve M~1pcT) 1c(x("))



SAP: Solution Drifting

y
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SAP vs. the Exact Solution

SAP Exact
Solution



PBD vs. SAP

o

m:or each constraint j:

€j

\

* Compute 64;:64; =

T lp T
VC]M] Vc]

* Compute 8x;: §x; = —M;'Vc] 5

e Commit: x = x + (ij

PBD (G-S)

/

e 6x = —h*M~1vcTéA

e x =x + 6x

SAP
o

(5)1 = h—lz (Vc M‘lVCT)_lc \

57



PBD v.s. SAP: Geometric Interpretation

Ground Truth SAP PBD

58



PBD Problems Visualized

 Solution Drifts
* Non-physically-based

e Hard to Control

59



PBD Problems Visualized

* Non-physically-based
* Stiffness depends on iteration count
cy=x,+hv, + h*M~1f,,,
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PBD Problems Visualized

e Hard to Control

in— [lx — vl|2
* min_olx =yl

e s.t.c(x) =0
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4 )

Compliant Constraints M ) 4 Ve A = 0

2
c(x)—al =0
g J

1 -
-a!=O,E=EcTa Le

* Mass Spring System

X X _
N .1 .2 o c(xq,x3) = Ilel Xl _ 1
X1 ' l ! X5 0
0 2UA
1 5 — 1
E(x1,x3) = Ek(”xl — x|l — 1) 0

a = [2pAly]~t = [k12]

63



Compliant Constraints

1 _
-a!=O,E=EcTa Le

* FEM (3D case)

AN

1
E(F(x)) = V(ullellz + 5 AT%(€))

[ €, 0.5€xy, 0.5€x,
€ = |0.5€y, €y 0.5¢,,

10.5€,, 0.5€y, €,

r

M
ﬁ(x -+ Vc(x)fA=0

~N

c(x)—al =0
. J
1
E==c"Kc
2
A+2u A A
A A+2u A
A A A+2u
K=V
U
a=K1!
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Solve Compliant Constraints with Newton

SAP Assumption:
y - x &)
Ve =0
SAP Initialization:
x « x




Solve Compliant Constraints with SAP

%2 veT | 16x | vea®
-gc o182 e(x®) — ar®

1 _
62 =25 (Ve MTIPCT + 12a) (e(x ) — aa®)
S AU+ = 209 4 52

§x = —h2M~1p T Alk+1)
x 0D = (kD) 5y




Solve Compliant Constraints with XPBD
[Macklin et al. 2016]

ﬂz vel([6x] _ | ve™a®

For each constraint: j
o _ -1 (k)
Compute: §4; = E(VC]- M'Vc) + h*a;) (Cj(x(k)) — ajA )
Commit: /1}“1) = /1]@ t 04

Compute: §x; = —hZMj‘lvchA]Q‘“)
Commit: xj(k+1) = xj(k“) + 8x;



PBD v.s. XPBD

KFor each constraint j: \

_ 1 €
* Compute 04;:04; = - ve; m-1veT

* Commit: 4; = 04;
» Compute 8x;: 6x; = —h?M; 'V A
* Commit: x = x + 0x;

PBD (G-S)
o /

* For each constraint j:

1 Cj—aj)lj
h2Vc; M]-_1\7c]7-1+h2aj
* Commit: 4; = 4; + 04
. e — 21Ty

Compute 0x;: 0x; = —h“M; "V¢; A;
* Commit: x = x + 0X;

* Compute 04;:04; =
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XPBD Result

Inflatable Balloon

Volume, stretch, shear, bending constraints of varying stiffness.

2.5k particles
15k constraints




What is left out?

0X _
oA

r

M T
ﬁ(x—y)-l—ch(x) A=0

\

c(x®)) — a2t

c(x)—al =0
. y
i g
o) (x) —y) + vcT 200
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Schur Complement of the Upper-left Block

m

M
E (k)
ﬁ ~+ /1]- \72Cj

J=1
Ve

M
o) +Vcla Ve +

Vel

—

m
(k)2
j=1

0X _
oA

y _
o) (x) —y) + vcT 200

c(x®)) — a2t



Geometric Stiffness

m

M
E (k) 72
ﬁ-l_ /1]- V Cj
—1

Ve

M
o) +Vcla Ve +

Vel

—

0X _
oA

m
(k)2
j=1

— (x" —y) + v AW

c(x®)) — a2t
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Geometric Stiffness: Example

X, X,
® | | @
X1 I lO I X2
X1 — X 1
C=|I 1 zII_1 PR
l 2
2 _ g T,—1 —1 N2
Vi, E =Vcia Ve Vxl,xlc

Geometric
Stiffness
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Stable Constrained Dynamics
[Tournier et al. 2015]

e When to use Geometric Stiffness?
1. Material highly nonlinear

2. Strong stiffness

M m
E (k) =2
ﬁ-l_ /1]- V Cj
Jj=1
Ve

Vel

—

2|

— (x®) —y) + vcT 20O

c(x®)) — @a®




Conclusion

r

\_

M
ﬁ(x — )+ Vc(x)'A=0
c(x)—al =0

\

J

constraint #iterations/frame per-iteration cost
[Goldenthal et al. 2007] hard medium medium
[Mdller et al. 2007] hard high low
[Tournier et al. 2015] compliant one high
[Macklin et al. 2016] compliant high low
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Conclusion: PBD

r

\_

M
ﬁ(x — )+ Vc(x)'A=0
c(x)—al =0

\

J

constraint #iterations/frame per-iteration cost
[Goldenthal et al. 2007] hard medium medium
[Muller et al. 2007] hard high low
[Tournier et al. 2015] compliant one high
[Macklin et al. 2016] compliant high low
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Conclusion: PBD

* The Performance of (X)PBD is...
e Similar to one iteration of Jacobi/Gauss-Seidel of SAP

/AN /
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Conclusion: SAP

r

\_

M
ﬁ(x — )+ Vc(x)'A=0
c(x)—al =0

\

J

constraint #iterations/frame per-iteration cost
[Goldenthal et al. 2007] hard medium medium
[Mdller et al. 2007] hard high low
[Tournier et al. 2015] compliant one high
[Macklin et al. 2016] compliant high low
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Conclusion: Geometric Stiffness

r

\_

M
ﬁ(x — )+ Vc(x)'A=0
c(x)—al =0

\

J

constraint #iterations/frame per-iteration cost
[Goldenthal et al. 2007] hard medium medium
[Mdller et al. 2007] hard high low
[Tournier et al. 2015] compliant one high
[Macklin et al. 2016] compliant high low
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Key Takeaway from this Talk

 (X)PBD is approximately converging to...

y

Ground Truth
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Position Based Dynamics

Tiantian Liu
GAMES Webinar
03/28/2019 Microsoft
Research
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