Decoupling Simulation Accuracy from Mesh Quality

Teseo Schneider¹, Yixin Hu¹, Jeremie Dumas², Xifeng Gao³, Daniele Panozzo¹, Denis Zorin¹

¹New York University
²NTopology
³Florida State University
Simulating Physics

Modeling [Terzopoulos et al. 1987]

Dedormation [Bargteil et al. 2014]

Fluid dynamics [Pan et al. 2013]

Topology Optimization [Zhu et al. 2017]

Aerodynamics
Partial Differential Equation (PDE)
Partial Differential Equation (PDE)

\[\Delta u = f, \quad f = 12x^2 \]
PDE Solving

\[\Delta u = 12x^2 \]

\[u = x^4 \]
Finite Element Method (FEM)

\[\Delta u = f \]

\[u = \frac{x^4}{x} \]
Finite Element Method (FEM)

\[\Delta u = f \]

\[u = \frac{4}{x} \quad ? \quad U = \sum_{i=1}^{n} u_i \phi_i \]
Finite Element Method (FEM)

\[\Delta u = f \]

\[u = x^4 \approx U = \sum_{i=1}^{n} u_i \phi_i \]
Three Factors Affect FEM Accuracy

- Mesh resolution
- Basis order
- Element quality
Quality Matters???
Quality Matters??
Quality Matters?
Quality Matters
Quality Matters!
Quality Matters!!
Quality Matters!!!

![Quality Matters!!]
Our Solution

Linear

Quadratic

Cubic

Quartic
Posteriori Refinement

• h-refinement [Wu 01], [Simnett 09], [Wicke 10], [Pfaff 14], ...

• p-refinement [Babuška 94], [Kaufmann 13], [Bargteil 14], [Edwards 14], ...
Priori Refinement

We increase order only based on the input
Overview

\[k = \frac{\ln \left(B \hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]

1. Use formula
Order of an element

\[k = \frac{\ln \left(B \hat{h}^{k+1} \frac{\sigma^2_E}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]
User parameter, $\gamma = 3$

\[
k = \frac{\ln \left(\frac{B \hat{h}^k + 1}{\hat{\sigma}^2} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E}
\]
Average edge length

\[k = \frac{\ln \left(B \hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]
Base order, usually \(1\)

\[
k = \frac{\ln \left(B \hat{h}_k^{\text{\#}+1} \frac{\sigma^2_E}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E}
\]
\[k = \frac{\ln \left(B \hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]

\[\hat{\sigma}_{2D} = \sqrt{3}/6 \]

\[\hat{\sigma}_{3D} = \sqrt{6}/12 \]
\[k = \ln \left(B \hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln \hat{h}_E \]

\[\sigma_E = \frac{\rho_E}{\hat{h}_E} \]

\[\hat{\sigma}_{2D} = \sqrt{3}/6 \]

\[\hat{\sigma}_{3D} = \sqrt{6}/12 \]
Overview

\[k = \frac{\ln \left(B\hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]

1. Use formula

2. Propagate degrees
Degree Propagation

- For each element E
- Compute k_E using formula
- Increase the order (if necessary) of:
 - The element E
 - All edge/face neighbors
Degree Propagation

- For each element E
- Compute k_E using formula
- Increase the order (if necessary) of:
 - The element E
 - All edge/face neighbors
Overview

\[k = \frac{\ln \left(B \hat{h}^{k+1} \frac{\sigma_E^2}{\sigma^2} \right) - \ln h_E}{\ln h_E} \]

1. Use formula
2. Propagate degrees
3. Construct \(C^0 \) basis
Building Continuous Basis

Linear

Cubic

\[\varphi_{l1} \]

\[p_{c3} \]

\[p_{c4} \]

\[\varphi_{l2} \]
Building Continuous Basis

- Linear
- Cubic
Overview

\[k = \frac{\ln \left(B \hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]

1. Use formula

2. Propagate degrees

3. Construct C^0 basis

4. Simulate!
Laplace

Standard

Ours
Laplace

Standard

Ours
Laplace

Standard Ours
Neo-Hookean Elasticity

Standard

Ours
Neo-Hookean Elasticity

Standard

Ours
Large Dataset

- Thingi10k
 [Zhou 17]
- Tetwild
 [Hu 18]
- ~10k Optimized
- ~10k Not Optimized
How to Measure Errors?

- Standard L_2 error estimate for linear elements

$$e_h = \| u - u_h \|_0 \leq C h^2 \| u \|_2$$
How to Measure Errors?

- Standard L_2 error estimate for linear elements

\[e_h = \| u - u_h \|_0 \leq C h^2 \| u \|_2 \]

L_2 norm or average error
How to Measure Errors?

• Standard L_2 error estimate for linear elements

$$e_h = \|u - u_h\|_0 \leq C h^2 \|u\|_2$$

Exact solution
How to Measure Errors?

• Standard L_2 error estimate for linear elements

$$e_h = \| u - u_h \|_0 \leq C h^2 \| u \|_2$$

Approximated solution
How to Measure Errors?

- Standard L_2 error estimate for linear elements

$$e_h = \|u - u_h\|_0 \leq C h^2 \|u\|_2$$

- Different h for every model!
How to Measure Errors?

- Standard L_2 error estimate for linear elements

$$e_h = \| u - u_h \|_0 \leq C h^2 \| u \|_2$$

- Different h for every model!

- L_2 efficiency

$$E_{L_2} = \frac{\| u - u_h \|_0}{h^2}$$
How to Measure Errors?

- Standard L_2 error estimate for linear elements

$$e_h = \|u - u_h\|_0 \leq C h^2 \|u\|_2$$

- Different h for every model!

- L_2 efficiency

$$E_{L_2} = \frac{\|u - u_h\|_0}{h^2}$$

- Independent from h
How to Measure Errors?

- Standard L_2 error estimate for linear elements

$$e_h = \| u - u_h \|_0 \leq C h^2 \| u \|_2$$

- Different h for every model!

- L_2 efficiency

$$E_{L_2} = \frac{\| u - u_h \|_0}{h^2}$$

 Small values are good!

- Independent from h
Degree Distribution

Optimized

Not Optimized
Number of DOF

Increase in DOFs

Optimized

Not Optimized
Overall Time (Meshing + Simulation)

Models vs Time

- Not Optimized
- Optimized
Overall Time (Meshing + Simulation)

- Not Optimized: 1 min ~ 5k models
- Optimized: 1 min ~ 3k models
Summary

\[k = \frac{\ln \left(B\hat{h}^{k+1} \frac{\sigma_E^2}{\hat{\sigma}^2} \right) - \ln h_E}{\ln h_E} \]

1. Use formula

2. Propagate degrees

3. Construct \(C^0 \) basis

4. Simulate!
Thank you!

Code available
http://www.github.com/polyfem