E F F I C I E N T s I M U I-AT I 0 N 0 F 3 D Vin Yang, Assistant Professor
E I_ A s T I C s 0 I_ I D A N D I T S Electrical & Comp. Fngineering Dept.

The University of New Mexico

APPLICATIONS ' iz

Q) THE UNIVERSITY of
' NEW MEXICO




About Me

Ph.D. 2013 from the University of Texas at Dallas
Awardee of David Daniel Fellowship Prize

Intern Researcher at Microsoft Research Asia, 2012

Research interests

Interactive simulation and 3D modeling

Computer graphics
Machine learning for graphics and vision
Computational design & digital fabrication

Visualization

Our research is generously suppor’red by:

THE UNIVERSITY of

NEW MEXICO




Deformable Models

Accurate deformable simulation is important for realism
FEM is the commonly-adopted approach

It is known to be computational expensive

Partial /ordinary differential equations with a large number of DOFs

DOFs are two-way coupled

Nonlinear models are more challenging as the system
matrix varies

. o~
[Zheng & James, 2012] [Zhao & Barbi¢, 2013] [Xu et al, 2014] [Teng et al, 2015]
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Model Reduction

A standard technique is called model reduction

Mu =f(u,u,t) u=adq

/

3n>>r

3n <
M, =@ f(®q,®q,t), M, =0 M®

Used in most existing interactive simulation techniques

tJe W

[Choi & Ko, 2005] [Kim & James, 2011]  [Barbi¢ et al, 2012] [Harmon & Zorin, 2013] [Xu et al, 2015]
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Model Reduction (cont.)

How to compute modal matrix
Solve a large scale 3nx3n eigen problem

Modal analysis, similar to performing PCA
over a dynamic system

ifrom1to6
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We call each column in ® a mode

L
L

Physical property

High-frequency modes (bigger eigen
values) are less likely to occur

L

L/ Ll
LB A B

» jfrom1to6

Low-frequency modes represent dominant

deformation Eigen modes of a beam model

THE UNIVERSITY of

<'® NEW MEXICO




Model Reduction w/ Local Effects

_IWhat if local deformation is favored

* Adding more modes into the system (r becomes bigger)

[Hormon & Zorin, 2013]
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Domain Decomposition

Subdivide the elastic volume into multiple domains

Build mode locally at each domain

[Kim & James, 2011]

We need to connect domains at their interfaces!
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Domain Discontinuity (Example )

[Kim & James, 2011]
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Domain Discontinuity (Example 1)

[Barbi¢ & Zhao, 2011]
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Boundary-Driven Local Mode

Computed as local equilibrium via boundary excitations
No locking artifacts and no cracks at interfaces
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Boundary-Driven Local Mode

. e

[Yang et al. 2013] THE UNIVERSITY of
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Incorporate Nonlinearity

Local equilibrium is based on the linear stiffness matrix
Around the rest shape geometry of the model

Not able to handle rotational deformation

Fundamental limitation for linear elasticity

Build subspace that captures nonlinear shapes e

-

[Yang et al. 2015] U
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Krylov Block Subspace

Add a perturbation to rest shape stiffness

K(ou)=K+0K, K =K(0)
Expand using Taylor series (in tensor notation)

K(ou) ™ = (K +6K) = KT+ K 'SKK+H.O.T.

where 0K is the stiffness differential

A recurrence approximation of arbitrary high-order!

State-of-the-art is one order approximation (known as the modal derivative)

Essentially a block-wise Krylov iteration
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Inertia Modes

[Yang et al. 2015] THE UNIVERSITY of

'@ NEW MEXICO



Example |

static soft belly softer belly
precomputation: 0.8 s | precomputation: 0.8 s

Applications: Simulation-in-the-loop Character Animation
[Yang et al. 201 5]
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Example Il

[Yang et al. 2015] THE UNIVERSITY of
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Example 111

maple tree - light wind
precomputation: .0 m

Applications: Multi-domain Simulation

[Yang et al. 2015] THE UNIVERSITY of
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Towards Extreme Deformation

Explicit interface constraints downgrade numerical stability

Highly deformed interface leads very big constraint force

Orders-of-magnitude larger than elastic internal force

[Luo et al. 2017]
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Towards Extreme Deformation

_!How to make the simulation efficient, versatile and stable
* Get rid of interface constraint

* How to glue domains and prevent cracks at the interface

_IMake them overlapping (similar to skinning)

* A material point in the overlapping region receives contribution from
multiple adjacent domains

* No duplicated DOFs

n el \ 1 A
Equilibrium weight Harmonic weight
[Nesme et al. 2009] [Gilles et al. 2011] [Carr et al 2001] [Tuet al 2011]

Ground truth

)

Our method

[Luo et al. 2017] THE UNIVERSITY of
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Weight Function

What is the best weight function

Many geometry-based interpolation functions are possible

Formulated as a QCQP, solve the weight that is consistent with
the most visible deformation of a domain
Different external forces yield different deformation patterns

The force comes from a direction that maximize the visual effect

argmax, || u |
K, K, 0 |[u] [p]
subjectto | K, K. C |lu, |=]|0],
0 C 0 |[4] [0]
and Ip|=1
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Principal Direction

Experiment 2
Principal direction

(Fig. 7 in the paper)

[Luo et al. 2017] THE UNIVERSITY of
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Some Examples

Experiment 4
Elastic multi-weight enveloping

frame 0 frame 200

(Fig. 8 in the paper)

[Luo et al. 2017]
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Highly Robust

Funnelling the bunny

Num. of elements: 64K
Num. of domains: 5 (150 DOFs) [
Pre-computation: 2 min ”
Simulation FPS: 26
Time step size: 1/100 s

[Luo et al. 2017] THE UNIVERSITY of
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GPU Deformable Model

Model reduction loses accuracy (U =D(q )

Can we achieve the real-time performance without reduction

DOFs are two-way coupled and solving a linear system is sequential

Need dedicated algorithm for parallel hardware (i.e. GPU)

U, =U + th+1

Vt+1 — Vt + hM_lf (ut+1) ( t+1 t t) ( t+1)
u_, =argmineg(u)

where &(U) = %(u —u. —hv,) M(u—-u, —hv,)+E(u)
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Why Optimization

A wide range of numerical methods are available

Start from an initial guess U® approaches to the target U”
following a descent direction AU

U < u® + @Ay

The key question is how to compute a good AU efficiently
Step length is also tweak-able (i.e. enforcing the Wolfe condition)

Typically, computing a better descent direction is more
expensive

Our method: a good descent direction that is inexpensive
(on GPU)
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Review: Our Candidates

Newton’s method

Approximates 8(U) by a quadratic function

Compute the descent direction as Au(k) — —H(k)' g(k)
Need to 1) evaluate the full Hessian and, 2) solve it

Quasi-Newton method (L-/BFGS)
Newton’s method with an approximate Hessian inverse (dense)
Need to 1) smartly guess the Hessian inverse and, 2) enforce the secant condition

Nonlinear CG

Roughly speaking, similar to LBFGS but only memorize the previous secant condition

Need to compute vector inner products

Gradient descent
Simply follow the negative gradient direction
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Review: Our Candidates
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Review: Our Candidates

In terms of energy reduction / iteration

Newton > | Quasi-Newton = | NLCG | > Gradient descent

In terms of computational cost / iteration

Newton < | Quasi-Newton = | NLCG | K  Gradient descent

{

Goal: fast energy reduction / time

We choose the gradient descent (GD) method
Pros: simple computation, very fast each iteration (<1 ms vs hundreds ms)

Cons: converge slowly without special treatment
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Make GD Great Again

Good preconditioning

Momentum-based optimization (Chebyshev acceleration)
Better initial guess (warm start)

Adjust step length (simplified Wolfe condition)

All of above does not destroy the advantages of GD
Simple computation

Parallelization friendly
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Performance

Our method is not particularly attractive on CPU

However, it can be significantly accelerated by GPU

(each nonlinear iteration takes less than 1 ms)

Note that this is fullspace simulation

CPU GPU GPU

Name #vert | #ele Cost Cost FPS
Dragon (Fig. 1) 16K 58K | 1.35s | 32.8ms | 30.5
Armadillo (Fig. 2) 15K 55K | 1.28s | 31.4ms | 31.8
Box (Fig. 7) 14K 72K | 1.47s | 37.6ms | 26.6
Dress (Fig. 4) 15K 44K | 0.29s | 26.6ms | 37.6
Double helix (Fig.9) | 13K 41K | 0.98s | 27.5ms | 364
Double helix (Fig.9) | 24K 82K | 1.91s | 38.5ms | 26.0
Double helix (Fig.9) | 48K | 158K | 3.86s | 65.4ms | 15.3
Double helix (Fig.9) | 96K | 316K | 7.78s | 122ms 8.2

—
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Result (Real-time Screen Record)

Newton's Method Our Method
(8 iterations, 0.1FPS) (96 iterations, 32FPS)

Comparison: Different Methods
(15K vertices, 55K tetrahedra)

[Wang & Yang 2016]
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RESULT (VARTIOUS MATERIALS)

Neo-Hookean Mooney-Rivlin Fung StVK

Comparison: Different Models
(14K vertices, 72K tetrahedra)

[Wang & Yang 2016]
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Robust Under Interaction

FPS: 0.00

Interactive Demo: Dragon
(16K vertices, 58K tetrahedra)

[Wang & Yang 201 6]
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Data-driven Simulation With NN

Simulation provides us unlimited clean data

Can we skip expensive computation in the simulation by leveraging
existing seen simulation

In theory yes; in practice difficult
Simulation is highly sophisticated

Very high-dimension input (tessellation, material parameters, simulation parameters,
numerical parameters eftc)

Huge network and tons of training data

We are inspired by ResNet
Use NN as a correction mechanism not a simulation mechanism
Consider a baseline simulator, which is simplified and inexact

Use NN to align it to be the correct one
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Maple Bonsai in Fullspace

[Luo at al 2018]
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Simulation Beyond Animation

A powerful tool in many applications beyond graphics

Computer vision e.g. real-time SLAM
Medical simulation e.g. tongue simulation for communication disorder
Intelligent CPS e.g. pavement distress detection

Digital fabrication e.g. simulation-in-the loop CAD

Computational transportation e.g. physics-based traffic dynamics

[Zhao et al. 2017] [Xu et al. 2018] [Zhang et al. 2018]
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Application: Better SLAM

U |

[nput RGBD sequence

Object selection

[Xu et al. 2018] THE UNIVERSITY of
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Application: Medical Simulation
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We propose an acoustic VR system that converts
acoustic signals fo human language to realistic
3D tongue animation sequences in real time.
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Application: Computational
Transportation

Example I: setting up the roadway geometry
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Application: Digital Fabrication

In this paper, we present a shape editing system which provides users structure analysis feedback interactively. 3x speed

Stress View
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[Xu et al. 2017] o _ . :
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Thank You
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