EFFICIENT SIMULATION OF 3D ELASTIC SOLID AND ITS APPLICATIONS THE UNIVERSITY of

MEXI

EW

Yin Yang, Assistant Professor Electrical & Comp. Engineering Dept. The University of New Mexico April 2019

About Me

Ph.D. 2013 from the University of Texas at Dallas

- Awardee of David Daniel Fellowship Prize
- Intern Researcher at Microsoft Research Asia, 2012

Research interests

- Interactive simulation and 3D modeling
- Computer graphics
- Machine learning for graphics and vision
- Computational design & digital fabrication
- Visualization

Our research is generously supported by:

Deformable Models

Accurate deformable simulation is important for realism

FEM is the commonly-adopted approach

It is known to be computational expensive

- Partial/ordinary differential equations with a large number of DOFs
- DOFs are two-way coupled

Nonlinear models are more challenging as the system matrix varies

[Zheng & James, 2012]

[Zhao & Barbič, 2013]

[Xu et al, 2014]

• • • • • •

Model Reduction

A standard technique is called model reduction

$$\mathbf{M}\ddot{\mathbf{u}} = \mathbf{f}(\mathbf{u}, \dot{\mathbf{u}}, t) \qquad \mathbf{u} = \mathbf{\Phi}\mathbf{q}$$

$$\mathbf{M}\ddot{\mathbf{u}} = \mathbf{f}(\mathbf{u}, \dot{\mathbf{u}}, t) \qquad \mathbf{u} = \mathbf{\Phi}\mathbf{q}$$

$$\mathbf{M}_{q}\ddot{\mathbf{q}} = \mathbf{\Phi}\mathbf{f}(\mathbf{\Phi}\mathbf{q}, \mathbf{\Phi}\dot{\mathbf{q}}, t), \qquad \mathbf{M}_{q} = \mathbf{\Phi}\mathbf{M}\mathbf{\Phi}$$

$$\mathbf{M}_{q}\ddot{\mathbf{q}} = \mathbf{\Phi}\mathbf{f}(\mathbf{\Phi}\mathbf{q}, \mathbf{\Phi}\dot{\mathbf{q}}, t), \qquad \mathbf{M}_{q} = \mathbf{\Phi}\mathbf{M}\mathbf{\Phi}$$

Used in most existing interactive simulation techniques

Model Reduction (cont.)

How to compute modal matrix

- Solve a large scale $3n \times 3n$ eigen problem
- Modal analysis, similar to performing PCA over a dynamic system
- ${}^{\bullet}$ We call each column in ${f \Phi}$ a mode

Physical property

- High-frequency modes (bigger eigen values) are less likely to occur
- Low-frequency modes represent dominant deformation

Eigen modes of a beam model

Model Reduction w/ Local Effects

What if local deformation is favored

Adding more modes into the system (r becomes bigger)

[Hormon & Zorin, 2013]

Domain Decomposition

Subdivide the elastic volume into multiple domains
 Build mode locally at each domain

[Kim & James, 2011]

We need to connect domains at their interfaces!

Domain Discontinuity (Example I)

[Kim & James, 2011]

Domain Discontinuity (Example II)

[Barbič & Zhao, 2011]

Boundary-Driven Local Mode

Computed as local equilibrium via boundary excitations

No locking artifacts and no cracks at interfaces

Boundary-Driven Local Mode

Incorporate Nonlinearity

Local equilibrium is based on the linear stiffness matrix

- Around the rest shape geometry of the model
- Not able to handle rotational deformation
- Fundamental limitation for linear elasticity
- Build subspace that captures nonlinear shapes

[Yang et al. 2015]

Krylov Block Subspace

Add a perturbation to rest shape stiffness

$$\mathbf{K}(\delta \mathbf{u}) = \mathbf{K} + \delta \mathbf{K}, \ \mathbf{K} = \mathbf{K}(\mathbf{0})$$

Expand using Taylor series (in tensor notation)

$$\mathbf{K}(\delta \mathbf{u})^{-1} = (\mathbf{K} + \delta \mathbf{K})^{-1} = \mathbf{K}^{-1} + \mathbf{K}^{-1} \delta \mathbf{K} \mathbf{K}^{-1} + \text{H.O.T.}$$

where $\delta \mathbf{K}$ is the stiffness differential

A recurrence approximation of arbitrary high-order!

State-of-the-art is one order approximation (known as the modal derivative)

Essentially a block-wise Krylov iteration

Inertia Modes

Example I

Example II

Applications: Nonlinear Sound Synthesis

Example III

Applications: Multi-domain Simulation

Towards Extreme Deformation

Explicit interface constraints downgrade numerical stability

- Highly deformed interface leads very big constraint force
- Orders-of-magnitude larger than elastic internal force

[Luo et al. 2017]

Towards Extreme Deformation

How to make the simulation efficient, versatile and stable

- Get rid of interface constraint
- How to glue domains and prevent cracks at the interface

Aake them overlapping (similar to skinning)

 A material point in the overlapping region receives contribution from multiple adjacent domains

No duplicated DOFs

Weight Function

What is the best weight function

Many geometry-based interpolation functions are possible

Formulated as a QCQP, solve the weight that is consistent with the most visible deformation of a domain

Different external forces yield different deformation patterns

The force comes from a direction that maximize the visual effect

arg max_p || u || subject to $\begin{bmatrix} \mathbf{K}_{ss} & \mathbf{K}_{sn} & \mathbf{0} \\ \mathbf{K}_{sn} & \mathbf{K}_{nn} & \mathbf{C} \\ \mathbf{0} & \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{s} \\ \mathbf{u}_{n} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{p} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix},$ and || **p** ||=1

Principal Direction

[Luo et al. 2017]

Some Examples

Experiment 4 Elastic multi-weight enveloping

[Luo et al. 2017]

Highly Robust

Funnelling the bunny

Num. of elements: 64K Num. of domains: 5 (150 DOFs) Pre-computation: 2 min Simulation FPS: 26 Time step size: 1/100 s

GPU Deformable Model

 \square Model reduction loses accuracy ($\mathbf{u}=\mathbf{\Phi}\mathbf{q}$)

Can we achieve the real-time performance without reduction
DOFs are two-way coupled and solving a linear system is sequential

Need dedicated algorithm for parallel hardware (i.e. GPU)

$$\mathbf{u}_{t+1} = \mathbf{u}_t + h\mathbf{v}_{t+1}$$

$$\mathbf{v}_{t+1} = \mathbf{v}_t + h\mathbf{M}^{-1}\mathbf{f}(\mathbf{u}_{t+1})$$

$$\mathbf{M}(\mathbf{u}_{t+1} - \mathbf{u}_t - h\mathbf{v}_t) = h^2\mathbf{f}(\mathbf{u}_{t+1})$$

$$\mathbf{u}_{t+1} = \arg\min\varepsilon(\mathbf{u})$$

where $\varepsilon(\mathbf{u}) = \frac{1}{2h^2}(\mathbf{u} - \mathbf{u}_t - h\mathbf{v}_t)$ $\mathbf{M}(\mathbf{u} - \mathbf{u}_t - h\mathbf{v}_t) + E(\mathbf{u})$
THE UNIVERSITY

Why Optimization

A wide range of numerical methods are available

Start from an initial guess $\mathbf{u}^{(0)}$ approaches to the target \mathbf{u}^{*} following a descent direction $\Delta \mathbf{u}$

 $\mathbf{u}^{(k+1)} \leftarrow \mathbf{u}^{(k)} + \alpha^{(k)} \Delta \mathbf{u}^{(k)}$

lacksquare The key question is how to compute a **good** $\Delta {f u}$ efficiently

Step length is also tweak-able (i.e. enforcing the Wolfe condition)

Typically, computing a better descent direction is more expensive

Our method: a good descent direction that is inexpensive (on GPU)

Review: Our Candidates

Newton's method

- Approximates $\mathcal{E}(\mathbf{u})$ by a quadratic function
- Compute the descent direction as $\Delta \mathbf{u}^{(k)} = -\mathbf{H}^{(k)} \mathbf{g}^{(k)}$
- Need to 1) evaluate the full Hessian and, 2) solve it
- Quasi-Newton method (L-/BFGS)
- Newton's method with an approximate Hessian inverse (dense)
- Need to 1) smartly guess the Hessian inverse and, 2) enforce the secant condition

Nonlinear CG

- Roughly speaking, similar to LBFGS but only memorize the previous secant condition
- Need to compute vector inner products

Gradient descent

Simply follow the negative gradient direction

Review: Our Candidates

Review: Our Candidates

In terms of **energy reduction** / **iteration**

> Quasi-Newton \approx NLCG

 \gg Gradient descent

In terms of **computational cost** / **iteration**

< Quasi-Newton \approx NLCG ≪ Gradient descent Newton

Goal: fast energy reduction / time

We choose the gradient descent (GD) method

- Pros: simple computation, very fast each iteration (<1 ms vs hundreds ms)</p>
- Cons: converge slowly without special treatment

Make GD Great Again

Good preconditioning

Momentum-based optimization (Chebyshev acceleration)

Better initial guess (warm start)

Adjust step length (simplified Wolfe condition)

All of above does not destroy the advantages of GD

- Simple computation
- Parallelization friendly

Performance

Our method is not particularly attractive on CPU

However, it can be significantly accelerated by GPU (each nonlinear iteration takes less than 1 ms)

Note that this is fullspace simulation

			CPU	GPU	GPU
Name	#vert	#ele	Cost	Cost	FPS
Dragon (Fig. 1)	16K	58K	1.35s	32.8ms	30.5
Armadillo (Fig. 2)	15K	55K	1.28s	31.4ms	31.8
Box (Fig. 7)	14K	72K	1.47s	37.6ms	26.6
Dress (Fig. 4)	15K	44K	0.29s	26.6ms	37.6
Double helix (Fig. 9)	13K	41K	0.98s	27.5ms	36.4
Double helix (Fig. 9)	24K	82K	1.91s	38.5ms	26.0
Double helix (Fig. 9)	48K	158K	3.86s	65.4ms	15.3
Double helix (Fig. 9)	96K	316K	7.78s	122ms	8.2

Result (Real-time Screen Record)

[Wang & Yang 2016]

RESULT (VARIOUS MATERIALS)

[Wang & Yang 2016]

Robust Under Interaction

FPS: 0.00

Interactive Demo: Dragon

(16K vertices, 58K tetrahedra)

[Wang & Yang 2016]

Data-driven Simulation With NN

Simulation provides us unlimited **clean** data

Can we skip expensive computation in the simulation by leveraging existing seen simulation

In theory yes; in practice difficult

- Simulation is highly sophisticated
- Very high-dimension input (tessellation, material parameters, simulation parameters, numerical parameters etc)
- Huge network and tons of training data
- We are inspired by ResNet
- Use NN as a correction mechanism not a simulation mechanism
- Consider a baseline simulator, which is simplified and inexact
- Use NN to align it to be the correct one

Maple Bonsai in Fullspace

[Luo at al 2018]

Simulation Beyond Animation

A powerful tool in many applications beyond graphics

- Computer vision e.g. real-time SLAM
- Medical simulation e.g. tongue simulation for communication disorder
- Intelligent CPS e.g. pavement distress detection
- Digital fabrication e.g. simulation-in-the loop CAD
- Computational transportation e.g. physics-based traffic dynamics

[Zhao et al. 2017]

Application: Better SLAM

Input RGBD sequence

Object selection

[Xu et al. 2018]

Application: Medical Simulation

We propose an acoustic VR system that converts acoustic signals fo human language to realistic 3D tongue animation sequences in real time.

[Luo et al. 2016]

Application: Computational Transportation

Example I: setting up the roadway geometry

[Zhang et al. 2018]

Application: Digital Fabrication

Thank You

