Rotation-strain Coordinate for Large
Elastic Deformation

Jiong Chen

CAD&CG Lab, Zhejiang University



Background



Elastic Simulation

= Traditional Industry: car, ship, plane etc.
= Film, Game, VR: Realistic digital objects.
= Modern Fabrication: 3D printing.

= Medicine, etc.




Foundation and Challenge

= Action
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= Key challenges: Dimension and Non-linearity £, /...
= Large number of nodes: high dimensional z € RY =

= Non-linear elastic force: f(z) is not linear to



Linear Subspace

= |n much smaller space B = [By, By, - - , By]
= Linear combination of a few possible deformations B;
= A few number of variables z € R",»r < N

= Variable substitution z = Bz
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Linear Subspace

= |n much smaller space B = [By, By, - - , By]
= Linear combination of a few possible deformations B;
= A few number of variables z € R",»r < N

= Variable substitution z = Bz

= Many methods to construct B
= Modal Analysis
= Modal Derivatives
= Mass PCA

= But nothing to do with Non-linearity




The Source of Non-linearity

= Geometric nonlinearity
= displacement-strain relationship (Green strain, etc.)

= Material nonlinearty
= strain-stress relationship (StVK, Neohookean, etc.)

We only consider geometric nonlinearity, with
linear strain-stress relationshipo = C: €



The Source of Non-linearity

= In the deformation gradient Vz = RS

= Rigid rotation R, non-rigid strain S
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The Source of Non-linearity

= In the deformation gradient Vz = RS

= Rigid rotation R, non-rigid strain S

= The potential energy just measures the strain S
= V(z) should not depend on rotation R
- deformation Vz

rotation strain




The Source of Non-linearity

deformation Vz

= Typical schemes to remove R from V
= Co-rotational: R"Vz = S /\ R o S
= Cauchy-Green: Vz'Vz = 52

rotation strain

= Invariants: e.g. det(Vz)

= Rotation and strain are mixed in Vz
= Non-linear operation needed to decouple them




The Source of Non-linearity

= Typical schemes to remove R from V
= Co-rotational: R"Vz = S
= Cauchy-Green: Vz'Vz = 52

= Invariants: e.g. det(Vz)

= Rotation and strain are mixed in Vz
= Non-linear operation needed to decouple them

= Rotation-Strain Coordinates y = (w, €)

deformation Vz

= Separately encode the rotation and strain
w=Ilog(R),e=8—1d
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From y back to z

= Solve Poisson problem

dv
L= argmin/ |Vz* — exp(w) (e + Id) ||, s.t. IQL =



From y back to z

= Solve Poisson problem

dVv
L= argmin/ |Vz* — exp(w) (e + Id) ||, s.t. IQL =
z* ()
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From y back to z

= Solve Poisson problem

dVv
L= argmin/ |Vz* — exp(w) (e + Id) ||, s.t. IQL =
z* ()

S N Jodv
R S
r = U(y)

= Part of nonlinearity in V(z) has been shifted into ¥



Reduced RS coordinate

= For infinitesimal deformation
Vu + (V)T N Vu — (Vu)!
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w and e are linear in u: (w,e)! = Qu

= Modal basis W € R3Vxr
= A subset of small deformation modes



Reduced RS coordinate

= For infinitesimal deformation
Vu + (Vu)T N Vu — (Vu)T

N 7 A 2 7

€(u) w(u)

Vz=1d+ Vu=1d+

w and e are linear in u: (w,e)! = Qu

= Modal basis W € R3Vxr
= A subset of small deformation modes

= Form modal coordinate to Euclidean coordinate

|- exp _ v
z—>ug>(w,e)—I>V:L‘—>a;



As geometric warping

= Fast integration: Cubature [Ann et al. 2008]



As geometric warping

= Fast integration: Cubature [Ann et al. 2008]

= Warping for subspace deformation

S U 0 — b "r‘r'



Space-time editing [Li 2014]



Introduction
Space-time editing
= Powerful tool for animation editing
= Seeking minimal control forces
=  Matching the constraints in space-time.

#
Positional and/or keyframe constraints

Dynamic or static input
animation



Unsolved problems in practice

Scalability for complex models
Lack of control due to linearization

[Barbic et al. 2012] [Li et al. 2013]

Elastic material significantly affects animation

= What is the right material?



Technical contributions

We propose two new techniques to solve these problems.

Reduced RS (Rotation-Strain) approach

Provides tight positional constraints under large deformation.

Material Optimization
Provides physically plausible and consistent results.



Space-Time Editing

For efficiency, we formulate the problem in modal coordinates

aremin Ef(z) + yE . (z
8 i (z) + yE.(2)

Modal coordinates ——

( Frames—1
1 9 : 2 Measures control forces
Ef(z) = > 1Z; + Dz; + Az|3

1 : 12 , :
E.(2) = > z ”ulJ W, z,) — 11”2 Measures error in constraints
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Space-Time Editing

arg min E¢(z) + yE.(2)
Z
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Euclidean coordinates reconstruction
Must be robust to large deformation.
Should only require local evaluations for efficiency.




Rotation-Strain

RS Def Grad. Euclidian
A_l Coord.

y\ //—\\

./g @

Proposed by [Huang et al. 2011].

Compute Y, gor all elements.

Solving global linear eq.

Au = G"Vg(y)

Inefficient for local evaluations



Reduced Rotation-Strain

RS Def Grad. Euclidian
Coord. Coord.

O,

U:H q = Z Fege gw
&) exp B
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Geometric reduction.

u =

Bq
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Avoid global linear solve.



Reduced Rotation-Strain

RS Euclidian
Def. Grad.
Coord. Coord. « Cubature method.
A
02¢
@ 0.15

relative error

1 1 'y >
40 80 120 160 200

Compute RS for cubature only.
Partial shape reconstruction



Comparison

Different method for the mapping from z tou
-

(N8

Rest shape RS Reduced RS

Linear map

Reduced RS method

= Robust to large deformation.

= Two orders of magnitude faster than full RS.
= Allows local evaluations of 3D coordinates.



Material optimization

How to pick a good elastic material?
Introduce material as new DOFs, and Optimize!

arg z]‘/j\?'zl)'?WlEf(Z’ AD)+yE.(W,2z)

Material in modal space: frequency, damping, and modal basis.



Material optimization

arg mn@lEf(Z AD)+yE.(W,2z)

Dimension is too large, so introduce basis sampling,
W=WS

Optimize smaller sampling basis S instead of W.



Material optimization
Regularization term.

Formulation for material optimization f

argmin E¢(z,A, D) + yE (S, z) + uE;(S)
z,\,D,S

subjectto Ay, d;, = 0Vk € [1,7]

Nonlinear, but all variables are in subspace.



Numerical method

Optimize the variables one by one

“ FixA, D, S, optimize Z
“Fix z, S ,optimize AD
" Fixz, A, D, optimize S

Guarantees monotone decrease!

inner iteration number



Animation editing

With material optimization, the resulting animation is more consistent!

Keyframe 10 Keyframe 10




Animation editing

With material optimization, the resulting animation is more consistent!

Without Material Opt. With Material Opt.

Keep
circular
motion

Abrupt
suddenly




Comparison

Our method provides tight positional constraints, even for large edits.

[Barbic et al. 2012] Our result



Comparison

Our method supports large edits without visual artifacts.

[Li etal. 2(513] Our result



Recovering material parameters

We use input animation as keyframes in the space-time editing.
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Non-uniform material for Input animation, with

the experiments. first 150 frames as constraints,
last 150 frames for comparison.



Recovering material parameters
Compare the simulated results with the last 150 frames.

Recovered material Uniform material



Recovering material parameters
Compare the simulated results with the last 150 frames.

Recovered material Uniform material



T.rex King Kong




General simulation [Pan 2015]



Rotation-Strain Space

= RS as general coordinate ﬁﬁ ii g::

= (w,¢)

= Potential energy V (y .u
= Reduce the non- Ilnearlty a Iot'
= For linear elastic material: | { % % :5%
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Rotation-Strain Space

= RS as general coordinate

y = (w,€)
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Rotation-Strain Space

= RS as general coordinate

y = (w,€)
= Potential energy V(y
= Reduce the non- Imearnty a Iot|

= For linear elastic material:
V(y) = §yTK y
= Kinetic energy T7'?

= External force ¢?

ll/

LS




Contributions of This Paper

= A full featured dynamical model in RS space
= Non-linear elastic material
= Correct kinetic energy
= External force and constraints



Contributions of This Paper

= A full featured dynamical model in RS space

= Non-linear elastic material

= Correct kinetic energy
= External force and constraints

= Advantages
= Lower dimensional subspace for dynamics
= Lower computational complexity

-"-\E 30
70 =
© ) < (5 - :i 25
“B R L EER B
50| €& 2 B ol . 7 \ VS ; & i
40 4 % 150
< : \ 2 3
L = 90,
= 20 B

30
2 ] 6 8 10 Tome

B

Py <
'/i C e

MNF(Hz)
Corotated

10

20
u



Non-linear Elastic Material

= Directly apply to strain ¢

= StVK material using Green-Lagrange strain 3(J7J — I) = 1€* + ¢
= Replace Green-Lagrange strain by Cauchy strain

= Less non-linearity but still rotation invariant



Non-linear Elastic Material

= Directly apply to strain ¢
= StVK material using Green-Lagrange strain §(J7J — I) = 3¢* + ¢

= Replace Green-Lagrange strain by Cauchy strain
= Less non-linearity but still rotation invariant

= For example, Fung’s model

Wsiv i (J, p1, A1) + ¢ (6WSWK (Tuzda) 1)

—

1 1, T
Sy Kiy+c (e?y Koy _ 1)




Video



Correct Kinetic Energy

= Substitute y into 7'(z)

T(5,9) = 5i(0)" Mily) = 53"

= Fromthe Lagrange L=T -V
doL OL oz| T

&#oy By oy




Correct Kinetic Energy

= Substitute y into 7T'(z)

T(4,y) = mi(y)T Mi(y) = 247

2 2
= Fromthe Lagrange L=T -V
doL 0L oz |
e P clan PR = Mi+—
dtoy Oy o oy S

= More details in the paper
= Coupling with floating frame
= Temporal discretization



External Force and Constraints

= Force g: gradient of a potential energy V
= E.g. gravity g: V,(z) = mg'x
= Constraints
= Equality ¢(z) =0
= Inequality c¢(z) > 0




External Force and Constraints

= Force g: gradient of a potential energy V
= E.g. gravity g: V,(z) = mg'x
= Constraints
= Equality ¢(z) =0
= Inequality c¢(z) > 0

= |nvolve the derivatives
oVy _ OVy Ox oc B Ocl 0x
oy Ozl dy’ Oy 0rdy




Accelerate the Integration

= |dentifying bottleneck
= Coordinates transformation
(67(")) L) VX L} ($1,$2,$3)

= Energy evaluation
= Potential energy V (e)
= Kinetic energy T'(z(y))



Inspiration

= Existing methods for Euclidean space simulation
= Linear modal analysis [Pentland and Williams 1989]
= Modal derivatives [Barbic¢ and James 2005]
= Polynomial precomputation [Barbi¢ and James 2005]
= Cubature [Ann et al. 2008]

= Natural to transfer these methods from Euclidean to RS.



Choice of Basis

= Any set of basis can be used for z and y respectively
= Set U, B to identity matrix = Full space
= Fewer basis = Linear subspace

= Expressivity and number of basis?
= Our Choice Euclidean Rotation-strain

LMA or mass-PCA| U U

Modal Derivatives on T’




Choice of Basis

= Any set of basis can be used for z and y respectively
= Set U, B to identity matrix = Full space
= Fewer basis = Linear subspace

= Expressivity and number of basis?
= Our Choice Euclidean Rotation-strain
LMA or mass-PCA| U

~

U

Modal Derivatives on T’

[(VT DV)‘lvTDg%(O), (VTDV)_lvTDa%(O),]




Choice of Basis
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Validation

= Experiment Settings

- Bun simulation with B = Id anc
U=3,510

= Reconstruct the shape using
resonably small subspace B

= Truncation criterion
> )\z = 0.0l%Amax




Validation

= Experiment Settings

- Bun simulation with B = Id anc
U=3,510

= Reconstruct the shape using
resonably small subspace B

= Truncation criterion
> Az > O-Ol%Amam

B|=0O(UP)




Our Method p=3 q=2
FPS: 25

Realistic Dynamics

Our Method Cubature
FPS: 88



Results
Large gravity

Small gravity jg

Time

ﬁ" 1N

Time

= 2s simulation run on the fork model

MNF(Hz)
Our Method
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= Numerical indicator for nonlinearity— MNF: Minimal
Natural Frequency

= V/A*, \* = argminy, \Mv = Kv



Large gravity

Small gravity jg
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= 2s simulation run on the fork model

= Numerical indicator for nonlinearity— MNF: Minimal
Natural Frequency

= V/A*, \* = argminy, \Mv = Kv









Future work

* Intrinsic representation of elasticity
e Redundant DOFs: 9|T| v.s 3|N|
* Pure strain representation
* Embeddable condition (integratable condition)

 Physically accurate warping
e Change rotation extrapolation function, e.g. Cayley mapping
* Introduce material-aware metric for Poisson construction



Thank you!



