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Outline

* Optimization for Training DNNs



Optimization for Training DNNs

 Stochastic gradient descent is the dominant method for
training DNNS5s
v Low computational cost
v Good empirical performance: can help escape local stationary
points
v' Relatively easy in supporting arbitrary network topology: using
automatic ditferentiation

X Vanishing or blow-up gradient
X Cannot deal with nondifferentiable activation functions directly

X Requires much manual tuning of optimization parameters such as
learning rates and convergence criteria

X Inherent sequential: difficult to parallelize

Quoc V. Le et al., On Optimization Methods for Deep Learning, ICML 2011.
Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Optimization for Training DNNs

 Other trials, as unconstrained problem
— Layer-wise pre-training
— Contrastive divergence
— Stochastic diagonal Levenberg-Marquardt
— Hessian free
— L-BFGS
— Conjugate gradient

min £ ((W"16( - o(W?e(W'XT)---)), L).

Quoc V. Le et al., On Optimization Methods for Deep Learning, ICML 2011.
Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Optimization for Training DNNs

* Other trials, as constrained problem, using penalty method

min /(X" L) —

{Wip{xe}

{(Wep{X*}

: n H - i i—1 yrie
min (X", L)+5 3 X g0 X .
i=2

s.t. X'=p(WitX™), =23, ..

~min (X", L)
(Wi {X1}{U7}

- LM, (Carreira-Perpinan and Wang, 2014)

min (X", L)
(Wi} {Xi} (U}

M - i i—1 yi— i ¢
+ 5 (U =W X R+ X = o(UD) 7).

1=2

s.t. Uizwi—lxi—l,xi:gb((]i), i=2.3.-- n. (Zeng et al. 2018)

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.




Optimization for Training DNNs

* Other trials, as constrained problem, using ADMM

: n é n__ypn—1yn-l 2
{Wi},{%lf{Ui},Me(U , L)+ 5 o —wr—tx -|-MHF

/ n—1
Fi cirri i—1 i i i
Cmin D) | ST X (U ).
{Wir{x*3.{U"} =2

st. U'=W'" X" X' =¢(U"), i=2,3,--- ,n.

(Taylor et al. 2016)

~ min X", L)
(Wit {Xi}{Ui},{A1},{B}

| R
i=2
min (X" L)

! i— — i—1112
(WiL{X1}{U7) + X W)+ B
s.t. U :Xi_laXi:Gb(Wi_lUi_l)a 1=2,3, -+ ,n. (Zhang, Chen, and Saligrama, 2016)

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.




Optimization for Training DNNs

 Other trials, as constrained problem, using lifted objective

function _
min | (X", L)+ S X -w X3

(Wil {X} — 2

| o / i=2

XZZ@(WZ_lXZ_l) s.t. X° >0, 1=2,3,---,n.
:maX(Wi_lXi_l, 0) (Zhang and Brand, 2017)
—argmin ||[U* — W1 X3
Ui>0

For ReLU only!

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Lifted Proximal Operator Machines for
Iraining DNNs

r = ¢(y) < = = argmin h(z, y)

xT

min g(z), s.t. z = ¢(y) = 1’;’31111 g(x) + ph(x,y)

T,y Y
Two commonly used operations in optimization: proximal operator
/ : 1 2
z=y—f(y) and |z =argminf(z)+;(z-y)
€T

r = ¢(y) <= x = argmin f(x) + %(97 —y)°

0€ (@ (z)—2)+(z—y) <= a=9(y)
f(z) is well defined (we allow f to take value of +00) even if ¢~!(y) is non
unique for some y between 0 and z. Anyway, ¢!, f, and g (to be defined later)
will not be explicitly used in our computation.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Lifted Proximal Operator Machines for
Iraining DNNs

Define f(X)=(f(Xw))-

X' = argmin 1Tf(X?’)1—|—§HXz—WZ_lX“_IH% = X'=op(W'tXx" .

X
min  {(X", L)
WX}
/ " : 1 : : :
. T 7 - v yrse—1 yvi—1)2
(W EAX" ) =2

st. X'=p(W' X)), i=2,3,--- ,n,

So far so good. But ...

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Lifted Proximal Operator Machines for
Iraining DNNs

However, its optimality conditions for {X* ?:_21 are:

Oeﬂi(qb—l(Xi)_Wi—lXi—l)
i (WHIW' X — X i =2, ,n— 1.

The equality constraints

X’i :gb(Wi—lXi—l)

do not satisfy the above! We need the equality constraints for
fast inference on new data samples!

Oeﬂi(gb—l(Xi)_W’i—lX’i—l)
it (WHH W' X)) X" THl i =2,--+ 'n—1.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Lifted Proximal Operator Machines for
Iraining DNNs

min  {(X", L)
(Wit {x}

i . 1. . . .
#3m (1T L4 X ).

1=2

min (X", L)+ 1(1’—’” XH1
i );u F(xX)

. . 1 , : :
_I_ng(Wz—lX@—l)l_l_§||XZ_W2—1X2—1||%> ,

g(z) = / " (6(y)—y)dy.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Lifted Proximal Operator Machines for
Iraining DNNs

Table 1. The f(z) and g(z) of several representative activation functions. Note
that 0 < a < 1 for the leaky ReLU function and a > 0 for the exponential
linear unit (ELU) function. We only use ¢(x) in our computation and do NOT

explicitly use ¢~ 1(2), f(2), and g(x). So all these activation functions and many
others can be used in LPOM.

function]| ¢(x) o (x) | f(x | g(x)
L log 1= ”BlO a4+ (1—z)log(1-2)— 2, 0<z<1

1 1—x g g 2 x _x
sigmoid|| o= 0<x<) { +00, otherwise log(e” + 1)

T__,—x L 10g S 1 m) 10g 1 x) 2 Ty, —T 2
tanh o (—1 <1$ <1) —|—(1-|—J: log(14+z))]-%, —1<z<1 |log(~5—)-%

+oc, otherwise
x, x>0 0, x>0 0, x>0
RelLU max(z, 0) {(—oo,()), x=0 { o0, otherwise {—%9:2, <0
leaky { z, >0 { z, >0 { 0 x>0 { 0, >0
la,. ol ,.2

ReLU ax, <0 /o, <0 =a?, <0 5, <0
ELU T, xr>0| [x, x>0 x>0 0, x>0

a(e*—1), x<0| |log(1+2Z), x<0 Oz—I-CE (log(£+1)— 1)——, x<0 oz(em—:z:)—%, x <0
softplus|| log(1+e™) log(e”—1) No analytic expl ession No analytic expression

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Lifted Proximal Operator Machines for
Iraining DNNs

The subproblems of penalty and
ADMM methods are all nonconvex!

* Good Property of LPOM

Denote the objective function of LPOM as F(W, X).

Theorem 4. Suppose £(X™, L) is convex in X™ and ¢ is non-decreasing. Then

F(W, X) is block multi-convez, i.e., convex in each X' and W* if all other blocks
of variables are fized.

1. Can use Block Coordinate Descent

: : 2. The optimal solutions for updating
Proof. F(W, X)) can be simplified to i and Wiean be obtained

FW, X) = E(X”,L)Jri 1L (1Tf(Xi)1
i—2 (1)
+1Tg(wimixi—1)1 _(Xiywi—lXi—1>)’

where f(z) = [, ¢~ (y)dy and g(z) = [ &(y)dy. O]

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Solving LPOM

* Overall algorithm

Thanks to the block multi-convexity, LPOM can be solved by Block Coordinate
Descent. Namely, we update X* or W* by fixing all other blocks of variables.
The optimization can be performed using a mini-batch of training samples.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Solving LPOM

Updating {X?}"~)
For i =2,---,n— 1, with {IW#}"! and other {X’ o fixed, the objective
function of LPOM reduces to

| 1 | |
min s (177X L4 5[ X WX )
o 1 o
b (1T gV XL G WX ).
Optimality condition:

0 (67 (X)W X
+ pip (W (oW X) = X)),
Fix-point iteration: x = f(X) = X1 = f(Xk)

(

Xt & (Wi—lXi—l M (W?,)T(qb(W’ZX’L,t) _Xi—|—1)>

Only ¢! No its inverse or derivative!
Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.




Solving LPOM

Updating X"
LPOM reduces to

: 1
min €0, £)-+0n (17 FOC) L4 G167 =W X
Optimality condition (assuming that the loss function is differentiable w.r.t.
X"):
o¢(X", L)
0 c
oxn

‘|‘I~Ln(§b_1(Xn) —Wn_an_l).

Fix-point iteration:

ynt+l — (Wn—an—l_ 1 8€(Xn,t’L)>

f — OX™

Only ¢! No its inverse or derivative!

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Solving LPOM
Updating {W'};}

{fwar i I can be updated with full parallelization. When {X*}7_, are fixed, the
objective of LPOM reduces to

_ 1 y .
min ng(W”XZ)lJriHW@Xz—X“LlH%, i=1,---,n—1, (1)

which can be solved in parallel. (1) can be rewritten as

min 17 g(W* X*)1— (X", WX, (2)

where g(x fo y)dy, as introduced before.
Suppose that ¢(x) is S-Lipschitz continuous. Then g(x) is S-smooth:

9'(x) =9 ()| =1¢(x) —o(y)| < Blz—yl.

(2) can be solved by APG via locally linearizing g(W) = g(W X?).
Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Solving LPOM

The 1teration 1is:

. VIR PP '
WZ’H_l :Yz,t_ B(qb(y?”tX%)—Xz_H)(Xz)Ta

where Y?%? is an extrapolation of W%t and W4t—1,

Only ¢! No its inverse or derivative!

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Parallelizing LPOM

The update of {W*} is already parallel. The serial update procedure of {X*}
can be easily changed to parallel update: each X* is updated using the latest
information of other X7’s, j # i.

Asynchronous parallelization!

SGD can only be parallelized at the implementation level,
not the algorithmic level.

Paper submitted to IJCAI 20109.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.
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Figure 1: Comparison of LPOM and SGD on the MNIST and the CIFAR-10 datasets.
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Table 2: Comparison of accuracies of LPOM and (Askari et al., 2018) on the MNIST dataset
using different networks.

Hidden layers || 300 | 300-100 | 500-150 | 500-200-100 | 400-200-100-50
(Askari et al., 2018) || 89.8% | 87.5% 86.5% 85.3% 77.0%
LPOM 97.7% | 96.9% 97.1% 96.2% 96.1%

0.55
o o P e i )
."///
0.5 !
oy I
m f - ==
g 045
17 i
@ ¢
= |
0.4 |
| ——LPOM
| — —-5GD
- 0.35
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Epochs

(d) CIFAR-10 (Test Acc.)

Table 3: Comparison with SGD and
(Taylor et al., 2016) on the SVHD

dataset.
SGD 95.0%
(Taylor et al., 2016) || 96.5%
LPOM 98.3%

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Advantages of LPOM

When compared with ADMM based methods, LPOM does not require Lagrange
multipliers and more auxiliary variables than {X*}7_,.

Moreover, we have designed delicate algorithms so that no auxiliary variables
are needed either when solving LPOM (to be introduced). So LPOM has much
less variables than ADMM based methods and hence saves memory greatly.
Actually, its memory cost equals to that of SGD.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Advantages of LPOM

When compared with the penalty methods, the optimality conditions of LPOM
are simpler, e.g.:

(LPOM) (W' X")-X"H)(X)'=0, i=1,---,n—1.

(MAC) (oW X=X og/ (W X))(XHT=0,i=1,--- ,n—1.

This may imply that the solution sets of MAC and others are more complex and

also “larger” than that of LPOM. So it may be casier to find good solutions of
LPOM.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Advantages of LPOM

When compared with the convex optimization reformulation methods, LPOM
can handle much more general activation functions, rather than RelLU only.

When compared with gradient based methods, such as SGD, LPOM can work
with any non-decreasing Lipschitz continuous activation function without nu-
merical difficulties, including being saturating (e.g., sigmoid and tanh) and
non-differentiable (e.g., ReLU and leaky ReLLU) and can update the layer-wise
weights and activations in parallel. Moreover, LPOM only needs to tune the
penaltys u;’s, which is much easier than tuning the learning rates of SGD.

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.



Future Work

« Extend to CNNs

— Support more operations, e.g., pooling and batch
normalization

— Support arbitrary topology

Jia Li, Cong Fang, and Zhouchen Lin, Lifted Proximal Operator Machines, AAAI 2019.
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* Optimization for DNN Structure Design



Analogy between DNN an
Optimization

hidden layer 1 hidden layer 2 hidden layer 3
input layer

NS

Xpt+1 = O(WrXy)

Xk+1 = g(leXk:—lv Vf(Xk))



* Optimization Inspired DNNs for Image
Reconstruction

* Optimization Inspired DNNs for Image
Recognition



* Optimization Inspired DNNs for Image
Reconstruction



Optimization Inspired DNNs for
Image Reconstruction

e [STA-Net m}gn %HAX _ y||2 + Z Arg(Dix)
« FISTA-Net =

L
1 )
e ADMM-Net min §||Ax —yl||“ + Z ANg(zy), s.t. z;=D;x
=1
* Rewrite the iterative algorithm to solve the image reconstruction model as
neural networks

* The activation functions are usually the soft thresholding operator

(a) Original (b) SDA (c) ReconNet (d) ISTA-Net (e) FISTA-Net
Jian Zhang and Bernard Ghanem, ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image
Compressive Sensing, CVPR 2018.
Jian Zhang and Bernard Ghanem, ISTA-Net - Iterative Shrinkage-Thresholding Algorithm Inspired Deep
Network for Image Compressive Sensing, arXiv, 2017.
Y. Yang, J. Sun, H. Li, and X. Zongben. Deep ADMM-net for compressive sensing MRI, NIPS, 2016.



* Optimization Inspired DNNs for Image
Recognition



Gradient Descent

Xk+1 — Xk — Oéka(Xk)

Theorem 1. Let f be convexr and 3-smooth. Then gradient descent with n =
B~ satisfies
_ 28llx — x|

Floxe) = Jx) <




Heavy-Ball Method

Xp+1 = Xk — o,V f(Xk) + Bre (X — Xk—1), ar > 0,8, > 0.

E— &

Image 2. SGD without momentum Image 3: SGD with momentum

Theorem 2. Let f be convexr and L-smooth. Then the heavy-ball method with
k
kciog and Py, = I +—2, where aq € (O,L_l], satisfies

. —

_lxo— x|
o 20&0(t + 1)

f(xe) = f(x7)



Heavy-Ball Method

Heaby-ball is faster than gradient descent when f is p-strongly convex:

I3k = x"|| < ¢"lx0 — x|,

where
([, —
—M, gradient descent
a={ Uit
j— L—
\/ﬁ, heavy-ball
. VL+ /R



Nesterov's Accelerated Gradient
Descent

Nesterov’s accelerated algorithm:

14 /1+ 02, Y
9 , and vy =

)\OZO,At:

At41

(Note that 74 < 0.) Now the algorithm is simply defined by the following
equations, with x; = y; an arbitrary initial point,

1 —_ —
Yit1 = Xt — =V f(%¢), =

6 Image 4. Nesterov update

Xi41 = (1 — 7s)¥e+1 + 1Yt

Theorem 3. Let f be a conver and [3-smooth function, then Nesterov’s accel-
erated gradient descent satisfies

_ 28lx —x|?

Flye) = Fx7) < R




Alternating Direction Method
(ADM)

Model Problem:

gllxﬂz f1(x1) + fa(x2),
s.t. Ai(x1) + Aa(x2) = b,

where f; are convex functions and A; are linear mappings.

L(x1,X2,A) = fi(x1)+ fa(x2) + (A, A1(x1) + A2(x2) — b)
+ 5[ Ay (x1) + Az (x2) — b|%,

x’f“ — argmin £(x1,x5, AF),
i <— Assume: Eas
xst = argmin £(xFT!, x5, AF), Y
X2
AP = AP L B[ A (BT 4 A (x5 — b,

Update 5y,



Optimization Inspired DNNs for
Recognition

 genetic algorithm (Schaftfer et al., 1992; Lam et al., 2003)

— perform worse than the hand-crafted ones
* Bayesian optimization (Domhan et al. 2015)
* meta-modeling approach (Bergstra et al. 2013)

 adaptive strategy (Kwok and Yeung 1997, Ma and
Khorasani 2003, Cortes et al. 2017)

* reinforcement learning (Baker et al. 2016, Zoph and Le
2017)

Heuristic, computation intensive, domain knowledge required

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



Key Observation

Xk+1 — (I)(kak). (1)
Zipy1 — Zi — Vf(Zk) (2)

We do not consider the optimal weights during the structure design stage. Thus,
we fix the matrix W as W to simplify the analysis.

Lemma 4. Suppose W 1is a symmetric and positive definite matriz. Let U =
W1/2. Then there exists a function f(x) such that (1) is equivalent to minimiz-

ing F'(x) = f(Ux) using the following steps:
1. Define a new variable z = Ux,

2. Using (2) to minimize f(z),

3. Recovering X, from zj, via x = U~ 'z.

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



Key Observation

Table 1: The optimization objectives for the common activation functions.

Activation function Optimization objective f(x)
. 1 [ T 1
Sigmoid Tre—7 5 — — > | Ui x4+ log (EU;.TX + 1)
tanh 1_e 2% M -5 UTx + 1o 1 +1
14e— 2% 2 L ¢ & 20 x
2
Softplus log(e® + 1) % -2 [C’ — polylog(2, —eYi x)}
2 UTx — log(UTx + 1) if UT'x >0
Softsi x Ix1Z _ S~ 6. (x). where . _ i g(U; ) h ,
otvsign 1+]|| 2 2.; (%), where ¢ (x) —U?x — log(U;-Tx — 1), otherwise
T 2
xz, if x>0, %2 (U x) if Ul
ReLU { : — 5. ¢;(x), where ¢;(x) = 2 ) ! i x>0,
0, ifz =<0 2 L ! 0, otherwise
: (U7 %)? —
T, if x > 0, B _ ) ' _ 22 , if U x > 0,
Leaky ReLU { oz, if 2 < 0. 5 2 Pi(x), where ¢;(x) = a(Usz)z ‘
— otherwise
T 2
. U x)
, f 0, 2 Y iful ,
ELU T oz % 52, 64(x), where ¢, (x) = 3 Ui x>0,
a(e 1), if 2 < 0. uT « T .
- ale i 7 —U; x), otherwise
T 2
. @ <2 (U, x) T 1 . 1
Swish e 5 > ( 5 + U; xlog PU?X +1 polylog | 2, PU;‘-TX

Networks for image reconstruction only aim at solving:

L
1 2
min o |Ax — " + > A\ig(Dix)
=1
Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



Hypothesis

* Faster algorithms may lead to better DNNs
— DNNs are computing features

— We want to compute features as quickly as possible and we
want as shallow as possible networks

— Faster algorithms can compute features quicker

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



From GD to Other Optimization
Algorithms

The Heavy Ball Algorithm. Following the three steps, we have:
1. Variable substitution z = Ux.

2. Using the heavy-ball algorithm to minimize f(z):

Zi1 = 2g — Vf(zx) + B(2zr — 2k—1) = UP(Uzg) + B(zk — 2k-1); (1)

3. Recovering x from z via x = U~ !z:

Xkt1 = U_lzkH = @(Uzk) -+ B(U_lzk — U_lzk_l)

— @(U2Xk) — B(Xk — Xk—l) = (I)(WXk) -+ ﬁ(Xk — Xk—l)- (2)

A
Xj— X _ L l X

A 4

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



From GD to Other Optimization
Algorithms

Nesterov’s Accelerated Gradient Descent Algorithm. Following the
same three steps, we have:

X1 = P(W(xp + Br(xk — Xp-1))); (1)
where 8 = 0;(1 — 0x—1)/0x—1. An equivalent formulation:

k k
X1 = ) M1y ®(Wg) X5 = D hiyr%;. (2)

=0 =0

IS

Xk—2 o Xk—l ‘. . Xk é' . Xi+1 _’@Xk—z T X1 T ‘ $‘}T’T A’E Xk+1

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



From GD to Other Optimization
Algorithms

ADMM.

Xl,( 2 T T .@XI’(+1.

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



Engineering Tricks
Relax W to be learnable W — W,

Relax ® to be learnable and incorporate pooling and
batch normalization [@®(Wx) — T(x)

Relax coefficients to be learnable
Xp+1 = P(Wxg) + B(xk — Xp—1) = Xpr1 = 1'(Xx) + S1Xi + BoXp—1

X1 = PIW(xp + B (Xt — Xk—1))) = X1 = T (B1xx + BoXp—1)

k k k k
Xk+1 = Z hk_|_1 (I)(WXJ)—I—X;C—Z hk+1;ij —7 Xk4+1 = ZOJ;_I_lT(XJ)-I—Z 5i+1X3
J=0 J=0 7=0 J=0
1 k k k
S G R » ) E A CURD L S
t=1 t=1 t=1
—

k k k
]_ / / /
Xpt1 = 5 (CI)(ka.) + Xp 1 + Z(Xt — xt)) o Xpa1 = T(xg) + Z X, + Zb’txt.
t=1 t=1 t=1
Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018




Engineering Trlcks

Xpt1 = T'(Xk) + B1Xp + BoXp—1 (16) Xpp1 = T(x}) + Z X + Zﬁtxt’
K K ; ; (20)
Xk+1 = Z Od?c—i—lT(XJ) + Zﬁi—i—lxj (18) xp41 = T(xx) + Z Xy + Zﬁtxt
=0 =0 =1 =1
Algorithm | Network Structure | Transforming Setting
GD (1) CNN Wx —convolution
HB (2) ResNet B2 =0 in (16)
AGD (4) DenseNet B=0,a=11in (18)
ADMM (6) DMRNet ay = B = 3 in (20)

ResNet and DenseNet are special cases!

Huan L, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure

Design, ACML 2018



Experiments

Model CIFAR-10 | CIFAR-100 | CIFAR-10(+) | CIFAR-100(+)
ResNet (n =9) 10.05 39.65 5.32 26.03
HB-Net (16) (n = 9) 10.17 38.52 5.46 26
ResNet (n = 18) 9.17 38.13 5.06 24.71
HB-Net (16) (n = 18) 8.66 36.4 5.04 23.93
DenseNet (k =12, L = 40)* 7 27.55 5.24 24.42
AGD-Net (18) (k =12, L = 40) | 6.4 26.33 5.2 24.87
DenseNet (k =12, L = 52) 6.05 26.3 5.09 24.33
AGD-Net (18) (k=12,L =52) |  5.75 24.92 4.94 23.84

Error rates (%) on ImageNet when HB-Net and
AGD-Net have the same depth as their baselines.

Model top-1(%) | top-5(%)
ResNet-34 26.73 8.74
HB-Net-34 26.33 8.56
DenseNet-121 25.02 7.71
AGD-Net-121 24.62 7.39

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure

Design, ACML 2018



Discussions

» Can serve as a good initialization of AutoML and hand design.

Huan Li, Yibo Yang, and Zhouchen Lin, Optimization Algorithm Inspired Deep Neural Network Structure
Design, ACML 2018



Outline

* Optimization for Training DNNs
* Optimization for DNN Structure Design
* Conclusions



Conclusions

* Optimization is an integral part of
machine learning

* Optimization can not only help training
DNNs, but also help structure design

* More interesting connections are yet to
explore
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