Model-driven Deep Learning

Jian Sun (孙剑)

Xi'an Jiaotong University *Email*: jiansun@mail.xjtu.edu.cn *Home page*: http://jiansun.gr.xjtu.edu.cn

April, 2019

Outline

Introduction

- Background: Image analysis / deep neural networks
- Motivation
- Model-driven Deep Learning Approach
 - Learning Markov Random Field Model for Image Restoration
 - Deep ADMM-Net for Fast Compressive Sensing MRI
 - Deep Fusion-Net for Multi-Atlas MR Image Segmentation
- Recent Progress
 - Learning proximal operators
 - Multimodal medical image synthesis
 - Learning Graph CNNs for 3D shape analysis
 - Learning to Optimize
- Discussion & Conclusion

Backgrounds--Image Processing & Analysis

Restoration & Reconstruction

Image Degradation: noises, motion blur, k-space sampling, etc.

Physical imaging model

Backgrounds--Image Processing & Analysis

Segmentation & Recognition

Semantic Segmentation

Lesion (Pulmonary nodule) localization and classification

Backgrounds--Models

• Conventional Models: Signal processing approaches

- Wavelets

– Image Filtering

Backgrounds--Models

• Conventional Models: Energy model and its optimization

- Energy Model with Regularization

$$x^* = \arg\min_{x} D(x, y; w) + R(w)$$

– Dictionary Learning

$$\{D^*, x^*\}$$
 = $\operatorname{argmin}_{D,x} ||D\alpha - y|| + ||\alpha||_p^p$

Applications: Image Restoration / Segmentation / Classification / MRI / Lesion detection

Backgrounds--Models

• Conventional Models: statistical models Evidence lower bound (ELBO)

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)}) | | p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}) \right]$$

Expectation-maximization (EM) Variational Inference

Variational expectation-maximization

Backgrounds--Deep Neural Networks

Deep Convolutional Neural Network

CNN [Krizhevsky A, et al., 2012]

Backgrounds--Deep Neural Networks

• LSTM:

• GAN

[lan Goodfellow et al., 2014]

Conventional Model Vs. Deep NNs

Conventional Models

(Optimization / statistics / energy model...)

Pros:

- Easy to incorporate domain knowledge
- Rely on less training data
- Good generalization ability

Cons:

- Maybe not optimal for specific task
- Parameter tuning

Deep Neural Networks (CNN/LSTM/GAN....)

Pros:

- An universal regressor
- Efficiency
- Effectiveness

Cons:

- Rely on large training set
- Relatively fixed structure
- Hardly incorporate domain knowledge

Model-driven Deep Learning

<u>Model</u>

Formulations?

- Energy model
- Statistical model
- Image priors
- Parameters?
 - Hyperparameters
 - Statistical model parameters
- Strategies?
 - Gradient updates in optimization
 - Actions in control

Why model-driven?

Explainable ML; Prior knowledge; Traditional model-based approach

Task-specific training data

Model-driven Deep Learning

MILLING UNITED

• Optimization-driven DL

- Sparse coding optimization

[Karol Gregor, et al, ICML 2010; P. Sprechmann, et al, PAMI 2015, etc.]

- Gradient descent, ADMM, proximal operators, etc

[J. Sun, et al., CVPR 2011; Y. Yang, J. Sun et al., NIPS 2016; Tim. Meinhardt, et al., ICCV 2017, etc.]

Statistical model-driven DL

– MRF, CRF

[S. Zheng, et al., ICCV 2015; J. Sun, et. al., IEEE TIP 2013, etc.]

- Variational inference

[J. Marino, et al., ICLR 2018; etc]

- EM [D. P. Kingma, ICLR 2014; Greff, Klaus, et al., NIPS 2017, etc]

Outline

- Introduction
 - Background: Image analysis / deep neural networks
 - Motivation
- Model-driven Deep Learning Approach
 - Learning Markov Random Field Model for Image Restoration
 - Deep ADMM-Net for Fast Compressive Sensing MRI
 - Deep Fusion-Net for Multi-Atlas MR Image Segmentation
- Recent Progress
 - Learning proximal operators
 - Multimodal medical image synthesis
 - Learning Graph CNNs for 3D shape analysis
 - Learning to Optimize
- Discussion & Conclusion

- Non-local Range MRF [J. Sun, M. Tappen, CVPR 2011]
 - □ A novel Markov random field model
 - Discriminative parameter learning

- Non-local Range MRF [J. Sun, M. Tappen, CVPR 2011]
 - A novel Markov random field model
 - Discriminative parameter learning

$$x^{*}(\Theta) = \arg\min_{x} \left\{ E(x \mid y, \Theta) = E_{data}(y \mid x) + E_{prior}(x; \Theta) \right\}$$

 $p(\mathbf{x}) = \frac{1}{Z(\Theta)} \exp(-\sum_{c \in C} V_c(\mathbf{x}; \Theta))$ Non-local Range MRF

Non-local Range MRF

 $p(\mathbf{x}) = \frac{1}{Z(\Theta)} \exp(-\sum_{c \in C} V_c(\mathbf{x}; \Theta))$

- Non-local Range MRF [J. Sun, M. Tappen, CVPR 2011]
 - A novel Markov random field model

Discriminative parameter learning

$$x^{*}(\Theta) = \arg\min_{x} \left\{ E(x \mid y, \Theta) = E_{data}(y \mid x) + E_{prior}(x; \Theta) \right\}$$

$$\Theta^* = \underset{\Theta}{\operatorname{arg\,min}} L(x^*(\Theta), t)$$

where $x^*(\Theta) = \underset{x}{\operatorname{arg\,min}} E(x \mid y, \Theta)$

- Non-local Range MRF [J. Sun, M. Tappen, CVPR 2011]
 - □ A novel Markov random field model
 - Discriminative parameter learning

$$x^{*}(\Theta) = \arg\min_{x} \left\{ E(x \mid y, \Theta) = E_{data}(y \mid x) + E_{prior}(x; \Theta) \right\}$$

$$p(\mathbf{x}) = \frac{1}{Z(\Theta)} \exp(-\sum_{c \in C} V_c(\mathbf{x}; \Theta))$$

Non-local Range MRF

 $\Theta^* = \underset{\Theta}{\operatorname{arg\,min}} L(x^*(\Theta), t)$ where $x^*(\Theta) = \underset{x}{\operatorname{arg\,min}} E(x \mid y, \Theta)$

 $\Theta^* = \operatorname{argmin}_{\Theta} L(\mathbf{x}^K(\Theta), \mathbf{t})$ where $\mathbf{x}^K(\Theta) = \operatorname{GradDesc}_K \{ E(\mathbf{x} | \mathbf{y}, \Theta) \}$

• Gradients of loss function w.r.t. model parameters KEY IDEA: $\Theta^* = \operatorname{argmin}_{\Theta} L(\mathbf{x}^K(\Theta), \mathbf{t})$ where $\mathbf{x}^K(\Theta) = \operatorname{GradDesc}_K \{ E(\mathbf{x} | \mathbf{y}, \Theta) \}$.

Similar to a Neural Network with K layers

– General framework to compute gradient of the parameter $\theta \in \Theta$

Back-propagation:

$$\frac{\partial L(\{\mathbf{x}_{l}^{K}, \mathbf{t}_{l}\})}{\partial \theta} = \sum_{l} \frac{\partial L(\mathbf{x}_{l}^{K}, \mathbf{t}_{l})}{\partial \theta} = -\sum_{l} \sum_{k=1}^{K} \frac{\partial L}{\partial \mathbf{x}_{l}^{k}} \frac{\partial g(\mathbf{x}_{l}^{k-1})}{\partial \theta}$$
$$\frac{\partial L(\mathbf{x}^{K}, \mathbf{t})}{\partial \mathbf{x}^{t}} = \frac{\partial L}{\partial \mathbf{x}^{K}} \prod_{k=t}^{K-1} \frac{\partial \mathbf{x}^{k+1}}{\partial \mathbf{x}^{k}} \qquad \frac{\partial \mathbf{x}^{k+1}}{\partial \mathbf{x}^{k}} \text{ and } \frac{\partial g(\mathbf{x}^{k})}{\partial \theta}$$

Outline

- Introduction
 - Background: Image analysis / deep neural networks
 - Motivation
- Model-driven Deep Learning Approach
 - Learning Markov Random Field Model for Image Restoration
 - Deep ADMM-Net for Fast Compressive Sensing MRI
 - Deep Fusion-Net for Multi-Atlas MR Image Segmentation
- Recent Progress
 - Learning proximal operators
 - Multimodal medical image synthesis
 - Learning Graph CNNs for 3D shape analysis
 - Learning to Optimize
- Discussion & Conclusion

Less sampling and fast reconstruction ?

Reconstruction

• Compressive sensing: A dominant approach in fast MRI reconstruction

[1] Michael Lustig, David L. Donoho, Compressed Sensing MRI, IEEE SIGNAL PROCESSING MAGAZINE, 2008.

A basic compressive sensing (CS) model:

$$\hat{x} = \operatorname*{arg\,min}_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} g(D_{l} x) \right\}$$

A: measurement matrix,

A = PF(P: Sampling matrix; F: Fourier transform)

- D_l : filter matrix corresponding to convolution operation
 - : regularization term, e.g., l_0 , l_1 norm
- $/_{l}$: regularization term

ADMM (Alternating Direction Method of Multipliers)

Augmented Lagrangian function:

$$L_{\rho}(x,z,\alpha) = \frac{1}{2} \|Ax - y\|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l}g(z_{l}) - \sum_{l=1}^{L} \langle \alpha_{l}, z_{l} - D_{l}x \rangle + \sum_{l=1}^{L} \frac{\rho_{l}}{2} \|z_{l} - D_{l}x\|_{2}^{2},$$

ADMM iterations:

$$\begin{cases} \mathbf{X}^{(\mathbf{n})} : x^{(n)} = F^T [P^T P + \sum_{l=1}^L \rho_l F D_l^T D_l F^T]^{-1} [P^T y + \sum_{l=1}^L \rho_l F D_l^T (z_l^{(n-1)} - \beta_l^{(n-1)})], \\ \mathbf{Z}^{(\mathbf{n})} : z_l^{(n)} = S(D_l x^{(n)} + \beta_l^{(n-1)}; \lambda_l / \rho_l), \\ \mathbf{M}^{(\mathbf{n})} : \beta_l^{(n)} = \beta_l^{(n-1)} + \eta_l (D_l x^{(n)} - z_l^{(n)}), \end{cases}$$

[Y Yang, J Sun, et al., NIPS 2016]

Data Flow Graph (DFG) for ADMM

• Deep ADMM-Net:

Reconstruction layer (X⁽ⁿ⁾):

 $\begin{aligned} x^{(n)} &= F^T (P^T P + |\sum_{l=1}^L \rho_l^{(n)} F H_l^{(n)T} H_l^{(n)} F^T)^{-1} [P^T y + \sum_{l=1}^L \rho_l^{(n)} F H_l^{(n)T} (z_l^{(n-1)} - \beta_l^{(n-1)})], \end{aligned}$ Convolution layer (C⁽ⁿ⁾): $c_l^{(n)} = D_l^{(n)} x^{(n)}$

Nonlinear transform layer (Z⁽ⁿ⁾): $z_l^{(n)} = S_{PLF}(c_l^{(n)} + \beta_l^{(n-1)}; \{p_i, q_{l,i}^{(n)}\}_{i=1}^{N_c}),$

Multiplier updating layer (M⁽ⁿ⁾): $\beta_l^{(n)} = \beta_l^{(n-1)} + \eta_l^{(n)}(c_l^{(n)} - z_l^{(n)}),$

• Network training: Gradient computation by backpropagation

Parameter optimization: L-BFGS

ground truth

Observed data

• Training loss

$$L(\theta) = \sum_{i=1}^{m} \frac{\sqrt{\|\hat{x}_i - x_i^{gt}\|_2^2}}{\sqrt{\|x_i^{gt}\|_2^2}}$$

Method	20	%	30	30%		40%		50%	
meanou	NMSE	PSNR	NMSE	PSNR	NMSE	PSNR	NMSE	PSNR	Test time
Zero-filling	0.1700	29.96	0.1247	32.59	0.0968	34.76	0.0770	36.73	0.0013s
TV [2]	0.0929	35.20	0.0673	37.99	0.0534	40.00	0.0440	41.69	0.7391s
RecPF [4]	0.0917	35.32	0.0668	38.06	0.0533	40.03	0.0440	41.71	0.3105s
SIDWT	0.0885	35.66	0.0620	38.72	0.0484	40.88	0.0393	42.67	7.8637s
PBDW [6]	0.0814	36.34	0.0627	38.64	0.0518	40.31	0.0437	41.81	35.3637s
PANO [10]	0.0800	36.52	0.0592	39.13	0.0477	41.01	0.0390	42.76	53.4776s
FDLCP [8]	0.0759	36.95	0.0592	39.13	0.0500	40.62	0.0428	42.00	52.2220s
BM3D-MRI [11]	0.0674	37.98	0.0515	40.33	0.0426	41.99	0.0359	43.47	40.9114s
Init-Net ₁₃	0.1394	31.58	0.1225	32.71	0.1128	33.44	0.1066	33.95	0.6914s
ADMM-Net ₁₃	0.0752	37.01	0.0553	39.70	0.0456	41.37	0.0395	42.62	0.6964s
ADMM-Net ₁₄	0.0742	37.13	0.0548	39.78	0.0448	41.54	0.0380	42.99	0.7400s
ADMM-Net ₁₅	0.0739	37.17	0.0544	39.84	0.0447	41.56	0.0379	43.00	0.7911s

Table 2: Comparisons of NMSE and PSNR on chest data with 20% sampling ratio.

Method	TV	RecPF	PANO	FDLCP	ADMM-Net ₁₅ -B	ADMM-Net ₁₅	ADMM-Net ₁₇
NMSE	0.1019	0.1017	0.0858	0.0775	0.0790	0.0775	0.0767
PSNR	35.49	35.51	37.01	37.77	37.68	37.84	37.93

- Extensions of ADMM-Net ([IEEE PAMI, 2018])
 - More flexible network structure

$$\min_{x} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} g(D_{l} x) \right\} \xrightarrow{z = [z_{1}, z_{2}, \dots, z_{l}]}_{s. t. z = x} \min_{x, z} \left\{ \frac{1}{2} \|Ax - y\|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} g(D_{l} z) \right\}$$

$$L_{\rho}(x, z, \beta) = \frac{1}{2} ||Ax - y||_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} g(D_{l} z) - \langle \alpha, z - x \rangle + \frac{\rho}{2} ||z - x||_{2}^{2}$$

$$\begin{aligned} x^{(n)} &= \arg\min_{x} L_{\rho} \left(x, z^{(n-1)}, \beta^{(n-1)} \right) = F^{T} \left(P^{T} P + \rho I \right)^{-1} \left[P^{T} y + \rho F(z^{(n-1)} - \beta^{(n-1)}) \right] \\ z^{(n)} &= \arg\min_{z} L_{\rho} \left(x^{(n)}, z, \beta^{(n-1)} \right) = \arg\min_{z} \frac{\rho}{2} \| \left(x^{(n)} + \beta^{(n-1)} \right) - z \|_{2}^{2} + \sum_{l=1}^{L} \lambda_{l} g(D_{l} z) \\ \beta^{(n)} &= \beta^{(n-1)} + \eta (x - z) \end{aligned}$$

TABLE 6 Performance comparisons on brain data with different sampling ratios.

Method	20	%	30	%	40	%	50	%	Test time
	NMSE	PSNR	NMSE	PSNR	NMSE	PSNR	NMSE	PSNR	$CPU \setminus GPU$
Zero-filling	0.1700	29.96	0.1247	32.59	0.0968	34.76	0.0770	36.73	0.001s\
TV [3]	0.0929	35.20	0.0673	37.99	0.0534	40.00	0.0440	41.69	0.739s\
RecPF [4]	0.0917	35.32	0.0668	38.06	0.0533	40.03	0.0440	41.71	0.311s\
SIDWT	0.0885	35.66	0.0620	38.72	0.0484	40.88	0.0393	42.67	7.864s\
PBDW [5]	0.0814	36.34	0.0627	38.64	0.0518	40.31	0.0437	41.81	35.364s\
PANO [6]	0.0800	36.52	0.0592	39.13	0.0477	41.01	0.0390	42.76	53.478s\
FDLCP [7]	0.0759	36.95	0.0592	39.13	0.0500	40.62	0.0428	42.00	52.222s\
BM3D-MRI [8]	0.0674	37.98	0.0515	40.33	0.0426	41.99	0.0359	43.47	40.911s\
Init-Net ₁₀	0.1737	29.64	0.1299	32.16	0.1025	34.21	0.0833	36.01	3.827s\0.652s
ADMM-Net ₁₀	0.0620	38.72	0.0480	40.95	0.0395	42.66	0.0328	44.29	3.827s\0.652s

Our results:

Applications to more general compressive imaging:

$$\mathbf{X}^{(n)} : x^{(n)} = (\Phi^H \Phi + \rho I)^{-1} [\Phi^H y + \rho (z^{(n-1)} - \beta^{(n-1)})],$$

Bottleneck

Fast inversion:

Proposition 2. Suppose we are given an $M \times N$ matrix Φ , a vector $b \in \mathbb{C}^N$ and constants C_0 , C_1 . For $x \in \mathbb{C}^N$, (1) if a condition $F\Phi^H\Phi F^H = \hat{\Phi}$ holds, where $\hat{\Phi}$ is a diagonal matrix and F is a Fourier transform matrix, then the linear system $(C_0I_{N\times N} + C_1\Phi^H\Phi)x = b$ can be solved efficiently using FFTs by a closed-form solution $F^H(C_0I_{N\times N} + C_1\hat{\Phi})^{-1}Fb$; (2) if a condition $\Phi\Phi^H = CI_{M\times M}$ holds, where C is a constant, then this linear system can be solved efficiently using a closed-form solution $(I_{N\times N} - \frac{C_1}{C_0+CC_1}\Phi^H\Phi)\frac{b}{C_0}$, where C is a constant.

- Partial Fourier matrix
- Random matrix with orthogonal rows
- Structurally random matrix

Fig. 19. Reconstruction of 30% sampled Zebra image with Walsh-Hadamard measurements. (a) The ground truth image; (b)-(f) Reconstructed images based on TVAL3, NLR-CS, BM3D-AMP, LDAMP and ADMM-Net. The PSNRs (dB) are 17.30, 23.54, 19.46, 22.75 and 23.79, respectively.

Fig. 20. Examples of reconstruction results from the 50 testing images with 20% sampling rate with code diffraction measurements (a) The ground truth image; (b)-(f) Reconstructed images based on TVAL3, NLR-CS, BM3D-AMP, LDAMP and ADMM-Net. The PSNRs (dB) are 22.21, 23.96, 21.26, 22.90 and 25.12, respectively.

Natural image compressive sensing

Outline

- Introduction
 - Background: Image analysis / deep neural networks
 - Motivation
- Model-driven Deep Learning Approach
 - Learning Markov Random Field Model for Image Restoration
 - Deep ADMM-Net for Fast Compressive Sensing MRI
 - Deep Fusion-Net for Multi-Atlas MR Image Segmentation
- Recent Progress
 - Learning proximal operators
 - Multimodal medical image synthesis
 - Learning Graph CNNs for 3D shape analysis
 - Learning to Optimize
- Discussion & Conclusion

- MALINOTONG UNDER
- **Background: Multi-atlas segmentation** has been one of the most widely-used and successful medical image segmentation techniques in the past decade.

Iglesias, J.E., et. al: Multi-atlas segmentation of biomedical images: a survey. (Med. Image Anal. 2015)

Non-local patch-based label fusion (NL-PLF) model

Hand-crafted features

Label fusion:

$$\hat{L}_p(T;\Theta) = \sum_i \sum_{q \in N_p} w_{i,p,q}(\Theta) L_q(X_i),$$

Fusion weight:

$$w_{i,p,q}(\Theta) = \frac{\exp(-||F_p(T;\Theta) - F_q(X_i;\Theta)||^2)}{\sum_j \sum_{q \in N_p} \exp(-||F_p(T;\Theta) - F_q(X_j;\Theta)||^2)},$$

- 1. Intensity (Coupe et al., 2011)
- 2. Intensity + spatial context (Wang et al., 2014)
- 3. Intensity + gradient + contextual (Bai et al., 2015)

[1] Coupe, P., et al. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. (NeuroImage 2011)

[2] Wang Z, et al. Geodesic patch-based segmentation. (MICCAI 2014)

[3] Bai, W., et al. Multi-atlas segmentation with augmented features for cardiac MR images. (Med. Image Anal. 2015)

• *Deep Fusion Net (MICCAI 2016)*: An end-to-end learnable deep architecture for NL-PLF concatenating feature extraction and non-local patch-based label fusion

[H. R. Yang, J. Sun, et al., MICCAI 2016, Medical Image Analysis, 2018]

• *Deep Fusion Net (MICCAI 2016)*: An end-to-end learnable deep architecture for NL-PLF concatenating feature extraction and non-local patch-based label fusion

[H. R. Yang, J. Sun, et al., MICCAI 2016, Medical Image Analysis, 2018]

Implementation of Label Fusion Sub-Net

$$w_{i,p,q}(\Theta) = \frac{\exp(-||F_p(T;\Theta) - F_q(X_i;\Theta)||^2)}{\sum_j \sum_{q \in N_p} \exp(-||F_p(T;\Theta) - F_q(X_j;\Theta)||^2)},$$
$$\hat{L}_p(T;\Theta) = \sum_i \sum_{q \in N_p} w_{i,p,q}(\Theta) L_q(X_i),$$

- Shift Layer: spatially shifts features and labels along each direction α ∈ R_{nl} = {(u, v) ∈ Z²| − t ≤ u, v ≤ t}.
- Distance Layer: $D_p^{\alpha}(T, X_i) = \left\| [C(F(T))]_p [C(S^{\alpha}(F(X_i))]_p) \right\|^2$.

• Weight Layer:
$$w_{i,p,q} = w_p^{\alpha}(X_i) = \frac{exp(-D_p^{\alpha}(T,X_i))}{\sum_j \sum_{\alpha \in R_{nl}} exp(-D_p^{\alpha}(T,X_j))}.$$

- Voting Layer: $\hat{L}_p(T) = \sum_i \sum_{\alpha \in R_{nl}} w_p^{\alpha}(X_i) \left[C\left(S^{\alpha}(L(X_i)) \right) \right]_p$.
- Loss layer: $E\left(\hat{L}(T;\Theta),L(T)\right) = \frac{1}{|T|} \left\|\hat{L}(T;\Theta) L(T)\right\|^2.$

Network structure

Deep features

Deep feature distance: $d(T, X_i) = ||F(T) - F(X_i)||$

A target image

Top-5 atlas images selected by normalized mutual information(NMI).

Top-5 atlas images selected by deep feature distance.

Database: MICCAI 2013 SATA Segmentation Challenge

Segmentation accuracy

	0	0	(0	Ç)	O	0
Grou	ndtruth	MV	PB [1] MAPM	1 [2]	SVMAF [3]	CNN	DFN
	Method	MV	PB [1]	MAPM [2	e] SVN	MAF [3]	CNN	DFN_NM	I DFN
	Accuracy	0.653	0.683	0.754	0).726	0.681	0.803	0.816
				D .		0.1.00			

 Table 1. The mean Dice metrics of different methods.

MICCAI 2013 SATA Dataset

[1] Coupe, P., et al. Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. (NeuroImage 2011)

[2] Shi, W., et al. Cardiac image super-resolution with global correspondence using multi-atlas patchmatch. (MICCAI 2013)

[3] Bai, W., et al. Multi-atlas segmentation with augmented features for cardiac MR images. (Med. Image Anal. 2015)

Method	Epicardium ADM	Epicardium AJM
DFN	0.9453 (0.0228)	0.8972 (0.0399)
DLLS	0.94(0.02)	—
DLDM	0.94(0.02)	—
$DLDM_init$	0.89(0.03)	—
SVMAF	0.9259(0.0251)	0.8630(0.0419)
PB	0.9170(0.0318)	0.8483(0.0523)
\mathbf{MV}	0.9155(0.0326)	0.8458(0.0535)

2009 LV segmentation challenge ADM: averaged Dice Metric; AJM: averaged Jaccard Metric Epicardium (心外膜)

DLLS: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical Image Analysis, 2017

DLDM: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left 545 ventricle in cardiac MRI, Medical Image Analysis, 2016

Outline

- Introduction
 - Background: Image analysis / deep neural networks
 - Motivation
- Model-driven Deep Learning Approach
 - Learning Markov Random Field Model for Image Restoration
 - Deep ADMM-Net for Fast Compressive Sensing MRI
 - Deep Fusion-Net for Multi-Atlas MR Image Segmentation
- Recent Progress
 - Multimodal medical image synthesis
 - Learning proximal operators
 - Learning Graph CNNs for 3D shape analysis
 - Learning to Optimize
- Discussion & Conclusion

• Background

densities)

• Background

Atlas CT

Target CT (unknown)

MR images CT Images

$$\mathcal{L}_{structure}(G_{MR}, G_{CT}) = \frac{1}{N_{MR}|R_{nl}|} \sum_{x} \left\| F_{x} \left(G_{CT}(I_{MR}) \right) - F_{x}(I_{MR}) \right\|_{1} + \frac{1}{N_{CT}|R_{nl}|} \sum_{x} \left\| F_{x} \left(G_{MR}(I_{CT}) \right) - F_{x}(I_{CT}) \right\|_{1} \right\|_{1}$$

[H. R. Yang, J. Sun, et al., MICCAI-DLMIA, 2018]

• Compared methods

- □ "cycleGAN": Conventional cycleGAN
- □ "cycleGAN (paired)": CycleGAN trained with paired data
- **Evaluation:** MAE, PSNR, SSIM, SSIM(HG).

	MAE	PSNR	SSIM	SSIM (HG)
CycleGAN (unpaired)	150.28 (18.06)	23.09 (1.04)	0.732 (0.029)	0.546 (0.042)
CycleGAN (paired)	122.66* (16.71)	24.57* (1.25)	0.785^{*} (0.029)	0.630* (0.043)
Proposed	127.78* (16.21)	24.67* (1.27)	$0.780^{*} (0.026)$	0.622* (0.044)

* denotes p < 0.001 compared to the conventional cycleGAN using a paired sample t

• Learning proximal operators for optimization ([ECCV, 2018])

$$\begin{split} \frac{I^c(\mathbf{x})}{A^c} &= \frac{J^c(\mathbf{x})}{A^c} T(\mathbf{x}) + (1 - T(\mathbf{x})), c \in \{r, g, b\}.\\ E(Q, T) &= \frac{\alpha}{2} \sum_{c \in \{r, g, b\}} \|Q^c \circ T + 1 - T - P^c\|_F^2\\ &+ \frac{\beta}{2} \|Q^{dk} \circ T + 1 - T - P^{dk}\|_F^2 + f(T) + g(Q^{dk}), \end{split}$$

Proximal-Dehaze Network Structure [ECCV 2018]

Learning on 3D shapes

Matrix Deep Learning / Graph-based Deep Learning

Data graph

Learning on 3D shapes

Method	Synthetic					Real				
Method	NN	1-T	2-T	E-M	DCG	NN	1-T	2-T	E-M	DCG
CSDLMNN [12]	99.67	98.02	99.86	51.14	99.63	97.92	92.78	98.68	27.03	97.60
Surf-ML-Net	100	96.92	99.95	51.16	99.65	96.67	91.92	98.33	27.03	96.78
ST-Net (w/o SPDM-T)	100	100	100	51.16	100	98.75	96.08	99.58	27.03	99.93
ST-Net	100	100	100	51.16	100	100	99.83	100	27.03	99.98

Spectral Network [ECCV-GMDL, 2018]

Learning on 3D shapes

Network optimizers

□ Traditional approach designed by experts SGD, Adam, RMSProp, AdaGrad,....

Learning-based approach Learn the optimizer by Recurrent Neural Network

Andrychowicz, Marcin, et al, Learning to Learn by Gradient Descent by Gradient Descent. In NIPS, 2016

NINA HOTONG UNITED

• Hyper-Adam [AAAI 2019]:

In each iteration of network parameter updating:

- Generate multiple parameter updates using Adam with multiple weight decay rates
- Adaptive combination of updates to generate final update

Algorithm 2 Task-Adaptive HyperAdam

Require:

21: **return** final parameter w_T .

0: optimizer; g_t : gradient of the optimizee L; d_t : update vectors

StateCell: encoding the current state $S_t = [s_t^1, ..., s_t^J]$

AdamCell: outputting moment field that contains multiple candidate update vectors WeightCell: outputting weight field that contains multiple weight vectors Combination: combining these candidate vectors to give the final update vector

Generalization with fixed steps

Activation	Adam	DMoptimizer	RNNprop	HyperAdam
sigmoid	0.35	0.38	0.34	0.33
ReLU	0.32	1.42	0.31	0.29
ELU	0.31	2.02	0.31	0.28
tanh	0.34	0.83	0.33	0.36

Table 1: Performance for training basic MLP in 100 steps with different activation functions. Each value is the average final loss for optimizing networks in 100 times.

Task	Adam	DMoptimizer	RNNprop	HyperAdam
Baseline	0.65	3.10	0.49	0.42
Small noise	0.39	3.06	0.32	0.19
2-layer	0.51	2.05	0.27	0.26

Table 2: Performance on different sequence prediction tasks.

Generalization of the Learners

Task	Measure	Adam	DMoptimizer	RNNprop	HyperAdam
CNN 1	loss	0.10	2.30	0.36	0.05
(MNIST)	top-1	98.50%	10.10%	96.46%	98.48%
(MINIST)	top-2	99.59%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99.03%	99.63%
CNN 2	loss	0.09	2.30	2.30	0.07
(MNIST)	top-1	98.98%	11.35%	11.37%	99.02%
	top-2	99.80%	21.45%	21.69%	99.78%

Table 3: Generalization of the learner trained by Adam, DMoptimizer, RNNprop and HyperAdam for 10000 steps.

Ablation Study

Summary

• Summarization:

Model-driven Deep Learning: proposed deep learning approaches by taking the merits of modeling-based approach and deep learning-based approach

- Gradient descent for energy minimization \rightarrow deep CNN
- ADMM algorithm \rightarrow deep ADMM-net
- Non-local approach -> deep fusion-net
- Graph-based deep models

• Current work (IMAGINE: Image Intelligence Group)

- Deep learning on graphs / manifolds
- Learning to learn
- Applications: Natural & medical images analysis / data analysis

Thanks for your attention!