Atlas Refinement with Bounded Packing Efficiency

Hao-Yu Liu, Xiao-Ming Fu, Chunyang Ye, Shuangming Chai, Ligang Liu University of Science and Technology of China

Texture

3D modeling

UV Unwrapping

Texture painting

Packing Efficiency (PE)

Packing Efficiency (PE)

Maximizing atlas packing efficiency is NP-hard!

[Garey and Johnson 1979; Milenkovic 1999]

Other Requirements

- Low distortion

High Distortion

Low Distortion

Other Requirements

- Low distortion
- [Golla et al. 2018; Liu et al. 2018; Shtengel et al. 2017; Zhu et al. 2018]
- Consistent orientation
- [Floater 2003; Tutte 1963; Claici et al. 2017; Hormann and Greiner 2000; Rabinovich et al. 2017; Schüller et al. 2013]
- Bijection
- [Jiang et al. 2017; Smith and Schaefer 2015]
- Low boundary length
- [Li et al. 2018; Poranne et al. 2017; Sorkine et al. 2002]

These methods do not consider PE!

Atlas Refinement

Previous Work

Box Cutter [Limper et al. 2018]

- Cut and repack

No guarantee for a high PE result!

Motivation

Packing Problems

Irregular shapes
Hard to achieve high PE

Rectangles
Simple to achieve high PE Widely used in practice

Axis-Aligned Structure

Axis-aligned structure

Rectangle decomposition

High PE (87.6\%)!

General Cases

Not axis-aligned

Axis-aligned Higher distortion

Distortion Reduction

Axis-aligned
High distortion

Bijective \& High PE High distortion

Bijective \& High PE Low distortion Bounded PE

Axis-aligned deformation

Pipeline

Rectangle decomposition and packing

Axis-Aligned Deformation

- Input

Single chart
Not bijective

10 charts
Bijective

Axis-Aligned Deformation

- Targets of boundary edges
- Smoothing
- Labeling
- Deformation

Axis-Aligned Deformation

Direction vector
Ambiguous rotating directions

Fail!

Axis-Aligned Deformation

Polar angle
Clear rotating direction

Success!

Polar Angle

$$
\begin{aligned}
\theta & =\operatorname{atan} 2(y, x)+2 k \pi \\
d \theta & =\frac{x d y-y d x}{x^{2}+y^{2}}
\end{aligned}
$$

Polar Angle

$$
\theta_{i+1}=\theta_{i}+\pi-\alpha_{i}
$$

Gauss-Bonnet formula

$$
\sum_{i}\left(\pi-\alpha_{i}\right)=2 \pi
$$

- Boundary smoothing

Target Calculation

- Gaussian smooth

$$
\begin{aligned}
& G_{\sigma}\left(s_{i}^{k}\right)=\sum_{b_{j}} l_{j} \exp \left(-\frac{\operatorname{dist}\left(b_{i}, b_{j}\right)^{2}}{2 \sigma^{2}}\right) s_{j}^{k} \\
& \hat{s}_{i}^{k}=G_{\sigma}\left(s_{i}^{k}\right) /\left\|G_{\sigma}\left(s_{i}^{k}\right)\right\|
\end{aligned}
$$

- Accept \hat{s}_{i}^{k} if $\hat{s}_{i}^{k} \cdot s_{i}^{k} \geq 0$
- Update interior angles
$\hat{\alpha}_{i}^{k+1}=\hat{\alpha}_{i}^{k}+\angle\left(s_{i}^{k}, s_{i}^{k+1}\right)-\angle\left(s_{i+1}^{k}, s_{i+1}^{k+1}\right)$
- Global rotation
- Polar angle axis-alignment

Axis-Aligned Deformation

Target polar angle Θ_{i}

Corners

Axis-Aligned Deformation

- Energy of boundary alignment

$$
\begin{aligned}
E_{\mathrm{edge}}\left(\mathbf{b}_{i}\right) & =\frac{1}{\frac{1}{2}(1-\gamma)\left(\theta_{i}-\frac{\pi}{2} \Theta_{i}\right)^{2}+\frac{1}{2} \gamma\left(\frac{l_{i}}{l_{i}^{0}}-1\right)^{2}} \\
E_{\operatorname{align}}(\mathbf{c}) & =\sum_{i=1}^{N_{b}} \frac{l_{i}^{0}}{l^{0}} E_{\operatorname{edge}}\left(\mathbf{b}_{i}\right)
\end{aligned}
$$

Axis-Aligned Deformation

- Energy of isometric distortion(symmetric Dirichlet)

$$
E_{\mathrm{d}}(\mathrm{c})=\frac{1}{4} \sum_{\mathrm{f}_{\mathrm{i}} \in \mathrm{FC}} \frac{\operatorname{Area}\left(\mathrm{f}_{i}\right)}{\operatorname{Area}\left(\mathrm{M}^{\mathrm{C}}\right)}\left(\left\|J_{i}\right\|_{F}^{2}+\left\|J_{i}^{-1}\right\|_{F}^{2}\right)
$$

Keep low distortion and orientation consistency.

Axis-Aligned Deformation

$$
\begin{array}{cc}
\min _{\mathrm{c}} & E_{\mathrm{d}}(\mathrm{c})+\lambda E_{\text {align }}(\mathrm{c})^{0.2 x ~ P l a y b a c k ~} \\
\text { s.t. } & \operatorname{det} J_{i}>0, \forall i
\end{array}
$$

Rectangle Decomposition and Packing

The faces are all rectangles.
But the number is too many.

Rectangle Decomposition and Packing

- Motorcycle graph algorithm

Distortion Reduction

$$
\min _{\mathrm{C}} E_{\text {reduction }}^{\substack{\text { Isometric } \\ \text { energy }}}=E_{\mathrm{d}}(\mathrm{C})+E_{\mathrm{PE}}(\mathrm{C})
$$

Experiments

PE Bound

Collection of Models

Comparison to Box Cutter [Limper et al. 2018]

Comparison to Box Cutter [Limper et al. 2018]

Benchmark $(5,588)$

PE=86.2\%

Benchmark $(5,588)$

$$
\begin{aligned}
& \mathrm{PE}=91.0 \% \\
& \mathrm{E}_{\mathrm{d}}=1.001
\end{aligned}
$$

Texture

Single-source Geodesics [Prada et al. 2018]

Conclusion

Conclusions

- Our method provides a novel technique to refine input atlases with bounded packing efficiency.
- Key idea: converting polygon packing problems to a rectangle packing problems
- High and bounded packing efficiency
- Good performance and quality
- Practical robustness

Limitation \& Future Work

- Modification of the input atlas may not meet the original intention.
- Boundary length elongation is not explicitly bounded.
- There is no theoretical guarantee, especially for the axis-aligned deformation process.

Thank you!

