Computational Peeling Art Design

Hao Liu, Xiao-Teng Zhang, Xiao-Ming Fu, Zhi-Chao Dong, Ligang Liu University of Science and Technology of China https://www.youtube.com/watch?v=JIOUHAkQdc4

Peeling art design

NOW I'VE SEEN EVERYTHING

Popular art form

Peeling art examples

Yoshihiro Okada's method

Peeling art design problem

Cut on citrus

Challenges of the computational method

- Non-trivial to optimize the similarity
- Unsuitable input shape Input Cut on 1114 shape citrus Unfolded shape

Existing work: cut generation

- Minimum spanning tree method [Chai et al. 2018; Sheffer 2002; Sheffer and Hart 2002]
- Mesh segmentation approaches [Julius et al. 2005; Lévy et al. 2002; Sander et al. 2002, 2003; Zhang et al. 2005; Zhou et al. 2004]
- Simultaneous optimization [Li et al. 2018; Poranne et al.2017]
- Variational method [Sharp and Crane 2018]

Existing work: cut generation

- Minimum spanning tree method [Chai et al. 2018; Sheffer 2002; Sheffer and Hart 2002]
- Mesh segmentation approaches [Julius et al. 2005; Lévy et al. 2002; Sander et al. 2002, 2003; Zhang et al. 2005; Zhou et al. 2004]
- Simultaneous optimization [Li et al. 2018; Poranne et al.2017]
- Variational method [Sharp and Crane 2018]

unfolded shapes *≠* input shapes

Key idea

Mapping computation

Two goals:

- 1. Low isometric distortion
- 2. Area of *R* approaches zero

$$\min E_{iso}(S^m, S) + wE_{shr}(R)$$

Isometric energy

• ARAP distortion metric [Liu et al. 2008]

$$E_{iso}(S^{m}, S) = \sum_{i=1}^{N_{f}} Area(f_{i})||J_{i} - R_{i}||_{F}^{2}$$

 R_i is an orthogonal matrix

Shrink energy

• Our novel rank-one energy

$$E_{shr}(R) = \sum_{i=1}^{N_{R_f}} Area(t_i) ||J_i - B_i||_F^2$$

B_i is a rank one matrix

- Other choices
 - Frobenius energy $||J_i||_F^2$
 - Determinant energy $det(J_i)$

Local-global solver

$$\min E_{iso}(S^m, S) + wE_{shr}(R)$$

$$st. \partial R = \partial S^m \text{ and } v^m, v^R \in M$$
Local step:

$$E_{iso}(S^m, S) = \sum_{i=1}^{N_f} Area(f_i)||J_i - R_i||_F^2 \qquad R_i = U_i V_i^T$$

$$E_{shr}(R) = \sum_{i=1}^{N_{R_f}} Area(t_i)||J_i - B_i||_F^2 \qquad B_i = U_i diag(\sigma_i, 0)V_i^T$$

Global step:

variables δv_k in tangent space $v_k^{new} = P(v_k + \delta v_k)$ δv_k in F_j is $\delta v_k^j = (F_k^j)^T F_k^v \delta v_k$

Some details

Representations of M

stalk locations

Suitable input

Unsuitable input

Interaction place

Interaction 1: shape augmentation

Mode 1: Shape augmentation

X

Mode 2: Part deletion

Interaction 2: part deletion

B

Interaction 3: angle augmentation

2

Peeling

Interaction 5: pre-processing

Interaction 5: pre-processing

Input with specify area

Align to initialize

Unprocessed: high distortion

Processed: low distortion

Cut generation

Real peeling

Real design

Screen capture 10 × playback

Mapping process

Real peeling

1× playback

Drawing graticule

Experiments

Shapes designed by Yoshihiro Okada

Comparison to Yoshihiro Okada

Okada's

Ours

CI hac playback

Our results

Conclusion

- A computational tool for peeling art design and construction.
- Unsuitable input 2D shapes are rectified by an iterative process.

Limitations: conservation principle

User input

Interaction many times also cannot keep posture

Thank you

