Multi-Robot Collaborative Dense Scene Reconstruction

Siyan Dong^{1,4} Kai Xu^{2,4} Qiang Zhou^{1,4} Andrea Tagliasacchi^{5,6,7} Shiqing Xin¹ Matthias Nießner⁸ Baoquan Chen³

¹Shandong University ²National University of Defense Technology ³Peking University ⁴AICFVE Beijing Film Academy ⁵Google Inc. ⁶University of Victoria ⁷University of Waterloo ⁸Technical University of Munich

Background

Scanning the World

3D content creation

ST THE ST

Real-Time 3D Reconstruction

Problems

Hardly User-Friendly

Reconstructions suffer from incomplete regions scanned by a rookie user.

Motivation

Auto-Scan

Xu et al. SIGGRAPH Asia 2015

Liu et al. SIGGRAPH 2018

Motivation

Multi-Robot Collaborative Auto-Scan

Progressive Reconstruction

scanning targets

scanning resources

Problem Statement

Robot Poses $\mathcal{R}_1, ..., \mathcal{R}_R$. $\mathcal{R}_i = (x_i, y_i, \theta_i) \in SE(2)$

Scanning tasks $\mathcal{T}_1, ..., \mathcal{T}_T$. $T_j = (x_j, y_j, \theta_j) \in SE(2)$

Scanning Task Extraction

9

Collaboration Objective Formulation

Spatial distribution of robots as sources μ_{source}

Spatial distribution of tasks as targets μ_{target}

Finding a mapping *T* that minimize the objective:

$$\arg\min_{T}\int_{x\in SE(2)}\gamma(x,T(x))\,\mathrm{d}\mu_{source}$$

 $T: \mu_{source} \rightarrow \mu_{target}$

sources

targets

Cost Function Approximation

Optimal Mass Transport(OMT) Formulation

12

Per-Robot Path Planning

13

Per-Robot Trajectory Optimization

For each path, sample a sequence of points $P_r = \{P_1, \dots, P_N\}$

Optimize point positions by minimizing the energy function

sources

targets

Per-Robot Trajectory Optimization

15

Progressively Scanning

24

Final Paths with Different Initializations

Evaluation

Benchmarks and Evaluation Metrics

Collect and format virtual scene models from SUNCG and Matterport3D

.....

Evaluation Metrics

- Completeness
- Accuracy
- Total energy consumption
- Load balance

Evaluation

Quality Comparisons

Completeness

$$\varphi_{\mathcal{G} \to \mathcal{S}} = \frac{100}{\sum A(g)} \sum_{g \in \mathcal{G}} A(g) \min_{s \in \mathcal{S}} \|s - g\|_2^0$$

Accuracy (RMS error)

$$\varphi_{\mathcal{S} \to \mathcal{G}} = \frac{1}{\sum A(s)} \sum_{s \in \mathcal{S}} A(s) \min_{g \in \mathcal{G}} \|s - g\|_2$$

Evaluation

Efficiency Comparisons

Total Energy Consumption Total Movement Distance

Load Balance Coefficient of Variation

Trajectories and Reconstruction

Results

Real-World Experiment

Real-World Experiment

Conclusion

Contributions

Formulation

Optimal Mass Transport formulation tailored for multi-robot scanning of unknown indoor environments.

Optimization

Efficient solution to multi-robot scan planning based on a divide-andconquer scheme that interleaves task assignment and path optimization.

• Code and Benchmark Will Be Released!

Conclusion

Future Works

- Task View Smoothness
- Discrete Approximate OMT Cost

Thank you!