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Scene generation problem

* Generate plausible room layouts automatically, to replace or reduce human work.
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Related works: data-driven

* Graphical model methods
[Fisher et al. SIGA 2012], [Kermani et al. SGP 2016], [Qi et al. CVPR 2018]
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© Respect object-object relations

@® Too many parameters and rules to tune manually

® Time-consuming
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Related works: data-driven

* Deep neural networks
[Wang et al. SIGGRAPH 2018], [Ritchie et al. CVPR 2019]
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© Easy-to-use model and better plausibility

@® No object-object relations
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Our method

* Indoor scene structures are inherently hierarchical.

Indoor scenes share some common patterns in the sub-scenes.



Our method

* Indoor scene structures are inherently hierarchical.

Hierarchical scene Recursive neural network -
representation Variational Auto-encoder




Scene Representation

Stepl: Deciding the merge
order
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Scene Representation
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floor

Step2: Construct the nodes
of the hierarchy

* Leaf nodes: objects
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Scene Representation

Step2: Construct the nodes
of the hierarchy

floor

* Leaf nodes: objects
* Internal nodes: groups
e Support node
e Surround node
* Co-occur node
* Wall node

e Root node
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Scene Representation

floor

Step3: Compute relative
positions between sibling
nodes

root node
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Our method

* Indoor scene structures are inherently hierarchical.

Hierarchical scene
representation

Recursive neural network -
Variational Auto-encoder




Network

* Network: RVvNN-VAE (Recursive Neural Network — Variational Auto-Encoder)
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Encoding Process
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Decoding process

root node
floor wall rp  wallnode rp wall  rp wallnode rp
/\ m
wall co-ocnode rp wall  co-oc node rp
/\ /\
sur node cabinet cabinet rp

%N,

bed supp nhode rp supp node rp

D 2 N,

stand lamp ' rp stand lamp rp

Output hierarchy

Sampled Root Code

Root Decoder

Node Classifier

Supp Decoder

Co-oc Decoder

Surr Decoder

Wall Decoder

Decoder module

Box Decoder

Output Hierarchy




Generation Pipeline

* The network learns to map a random vector to a plausible indoor scene.
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Scene representation matters!

Indoor scenes are complex and diverse

Appropriate scene representation is the key to learning

Our key points:
(1) hierarchical structure,
(2) relative position format.

SUNCG dataset [Song et al. 2017]



Key point 1: Hierarchical structure

* We specifically define wall node and root node in our hierarchies.

* Reason: walls should serve the role of “grounding” the placement of objects in a room.
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Ablation Studies: Hierarchica!l structure
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Ablation Studies: Hierarchica!l structure
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Ablation Studies: Hierarchica!l structure
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Ablation Studies: Hierarchica!l structure

root node
AAN It is important to have floors, wall nodes, and their
/\A Sy relative positions in the last merge, to “ground” the
Hierarchy 1 object positions.
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Key point 2: Relative Position format
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Ablation Studies : Relative position format

Object’s absolute position Generated scenes
i in the leaf nodes

Relative pos 2



Ablation Studies : Relative position format

Relative pos 2

Relative position between
the object centers
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Generated scenes



Ablation Studies : Relative position format

\ Relative pos 2/

Relative position with offsets
between closest edges (ours)

Generated scenes



Results

Generated scenes:

* Plausible

* Novel

* Diverse

Random samples from
our generated scenes

Closest scene from
the training set

Closest scene from our
1K generated scenes

(a)

(b)

(0




Comparison against a graphical model method

* For comparison, we select scenes with the same object shapes.

(b) Our results.

3-12min / scene.
No guarantee on the exact alighment.

More unreasonable object pairs.

0.1027sec / scene.

Relative positions with attachment and
alignment information.



Comparison: Perceptual studies

We ask users to score or select the scenes based on their plausibility.

Comparisons are done against (1) the training set, (2) [Kermani et al. 2016]
(3) [Wang et al. 2018], (4) [Qi et al. 2018]
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Applications

» Data augmentation method for deep learning tasks

Semantic scene segmentation accuracy

Semantic scene segmentation task:
78.99%

. o » Network: PointNet [Qi et al. 2017]
o * Dataset: Indoor scenes as point clouds
I e Results: More relevant training data, better
learning performance and generalization.

SUNCG, 24K OURS, 24K SUNCG, 12K + Ours, 12K SUNCG 24K + Ours, 24K



Applications

e 2D layout guided 3D scene modeling

(a) Input 2D layouts (b) Mean (c) Randomly sampled

* Goal: 2D box layout to 3D indoor scene
| - * Network: Pre-trained RVNN-VAE on 3D scenes
* Result: Transform between multi-modal data

which share the same hierarchical structures.

—_—

F




Applications

* Hierarchy-guided scene editing

root node

floor wall node wall node

walll co-oc node wall2 supp node

chairl stand2  tablelamp2 bed2 D (chal2 D

(a) (b)

Hierarchical indoor scene structure helps designers to edit a scene at the sub-scene level.



Conclusion

* We present a generative neural network which enables us to generate plausible
3D indoor scenes in large quantities and varieties, easily and highly efficiently.

* We study the influence of different scene representations on the learning ability
of generative RVNNSs.

* We show the applications of our generated scenes with the corresponding

hierarchies.



Thank youl!



