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Scene generation problem

Planner5d

• Generate plausible room layouts automatically, to replace or reduce human work.



Related works: data-driven

• Graphical model methods
[Fisher et al. SIGA 2012], [Kermani et al. SGP 2016], [Qi et al. CVPR 2018]

Object appearance Object positioning+

Learning

J Respect object-object relations

L Too many parameters and rules to tune manually

L Time-consuming

Generation



• Graphical model methods

• Deep neural networks
[Wang et al. SIGGRAPH 2018], [Ritchie et al. CVPR 2019]

Related works: data-driven

Indoor scene Multi-channel image CNN training

J Easy-to-use model and better plausibility

L No object-object relations



Our method

• Indoor scene structures are inherently hierarchical. 

Indoor scenes share some common patterns in the sub-scenes.



Our method

Z+

Hierarchical scene 
representation

Recursive neural network -
Variational Auto-encoder

• Indoor scene structures are inherently hierarchical. 



Scene Representation
Step1: Deciding the merge 
order



Step1: Deciding the merge 
order
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Scene Representation

supp node supp node

• Support node

sur node• Surround node

co-oc node co-oc node

• Co-occur node

stand standlamp lamp

bed

wall

wall wall

wall

cabinet cabinet

floor

rug

wall nodewall node

• Wall node
• Root node

root nodeStep1: Deciding the merge 
order

• Leaf nodes: objects

Step2: Construct the nodes 
of the hierarchy

• Internal nodes: groups



Scene Representation
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Step3: Compute relative 
positions between sibling 
nodes

Step1: Deciding the merge 
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• Leaf nodes: objects

Step2: Construct the nodes 
of the hierarchy

• Internal nodes: groups



Our method

Z+

Hierarchical scene 
representation

Recursive neural network -
Variational Auto-encoder

• Indoor scene structures are inherently hierarchical. 



• Network: RvNN-VAE (Recursive Neural Network – Variational Auto-Encoder)

Network

Z



Encoding Process
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Decoding process
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Generation Pipeline

• The network learns to map a random vector to a plausible indoor scene.

Generation pipeline



Scene representation matters!

Indoor scenes are complex and diverse

Appropriate scene representation is the key to learning

SUNCG dataset [Song et al. 2017]

Our key points: 

(1) hierarchical structure, 

(2) relative position format.



Key point 1: Hierarchical structure

• We specifically define wall node and root node in our hierarchies.

• Reason: walls should serve the role of “grounding” the placement of objects in a room.

Our hierarchical structure
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Ablation Studies: Hierarchical structure

Hierarchy 1

Hierarchy 2

Hierarchy 3



Hierarchy 1

Hierarchy 2

Hierarchy 3

Hierarchy 1:
L No “wall node”s
L No “root node”

Generated scenes

Ablation Studies: Hierarchical structure



Hierarchy 1

Hierarchy 2

Hierarchy 3

Generated scenes

Ablation Studies: Hierarchical structure

Hierarchy 2:
J “wall nodes”
L No “root nodes”



Hierarchy 3 (Ours):
J “wall nodes”
J “root nodes”

Hierarchy 1

Hierarchy 2

Hierarchy 3

Generated scenes

It is important to have floors, wall nodes, and their
relative positions in the last merge, to “ground” the
object positions.

Ablation Studies: Hierarchical structure



Key point 2: Relative Position format

Absolute pos

Relative pos 2

Relative pos 1



Ablation Studies : Relative position format

Absolute pos

Relative pos 2

Relative pos 1

Object’s absolute position 
in the leaf nodes

Generated scenes



Ablation Studies : Relative position format

Absolute pos

Relative pos 2

Relative pos 1

Relative position between 
the object centers

Generated scenes



Absolute pos

Relative pos 2

Relative pos 1

Relative position with offsets 
between closest edges (ours)

Generated scenes

Ablation Studies : Relative position format



Results

Generated scenes:

• Plausible

• Novel

• Diverse



Comparison against a graphical model method

• For comparison, we select scenes with the same object shapes.

• 3-12min / scene.

• 0.1027sec / scene.

• No guarantee on the exact alignment.
• More unreasonable object pairs. 

• Relative positions with attachment and 
alignment information.



Comparison: Perceptual studies

Comparisons are done against (1) the training set, (2) [Kermani et al. 2016]
(3) [Wang et al. 2018], (4) [Qi et al. 2018]

We ask users to score or select the scenes based on their plausibility.



Applications

• Data augmentation method for deep learning tasks

Semantic scene segmentation task:

• Network: PointNet [Qi et al. 2017]

• Dataset: Indoor scenes as point clouds

• Results: More relevant training data, better 

learning performance and generalization.



Applications

• Data augmentation method for deep learning tasks
• 2D layout guided 3D scene modeling

• Goal: 2D box layout to 3D indoor scene

• Network: Pre-trained RvNN-VAE on 3D scenes

• Result: Transform between multi-modal data 

which share the same hierarchical structures.



Applications

Hierarchical indoor scene structure helps designers to edit a scene at the sub-scene level.

• Data augmentation method for deep learning tasks
• 2D layout guided 3D scene modeling
• Hierarchy-guided scene editing



Conclusion

• We present a generative neural network which enables us to generate plausible 

3D indoor scenes in large quantities and varieties, easily and highly efficiently. 

• We study the influence of different scene representations on the learning ability 

of generative RvNNs.

• We show the applications of our generated scenes with the corresponding 

hierarchies.



Thank you!


