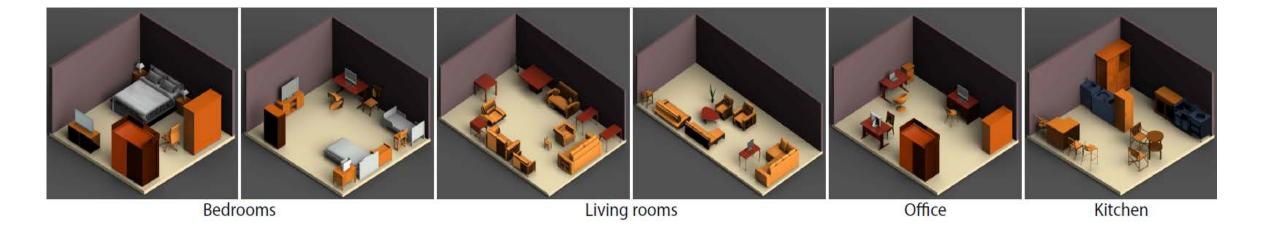
GRAINS: Generative Recursive Autoencoders for INdoor Scenes

Manyi Li ^{1,2}, Akshay Gadi Patil ², Kai Xu ^{3,4}, Siddhartha Chaudhuri ^{5,6}, Owais Khan ⁶, Ariel Shamir ⁷, Changhe Tu ¹, Baoquan Chen ⁸, Daniel Cohen-Or ⁹, Hao (Richard) Zhang ²

¹ Shandong University ² Simon Fraser University ³ National University of Defense Technology ⁴ AICFVE Beijing Film Academy ⁵ Adobe Research ⁶ IIT Bombay ⁷ The Interdisciplinary Center ⁸ Peking University ⁹ Tel-Aviv University

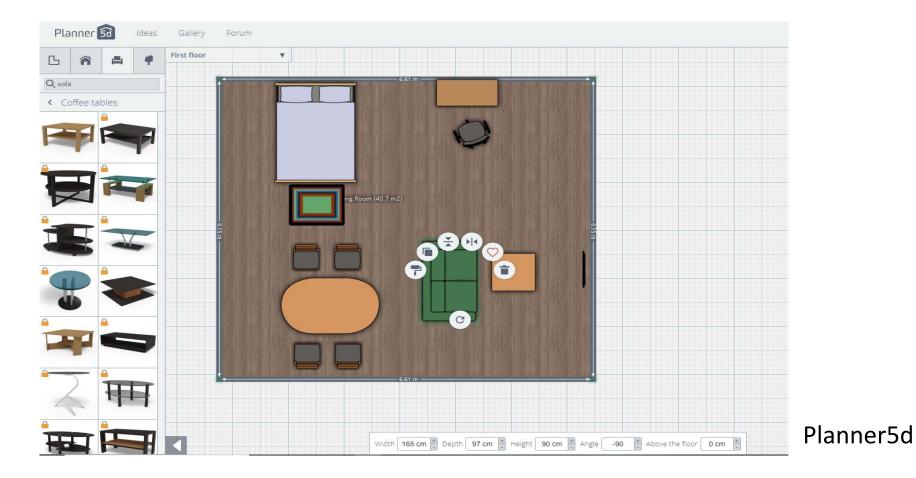


Outline

- Problem & Related work
- Method
 - Scene representation
 - Network
- Ablation study
- Results & Application

Scene generation problem

• Generate plausible room layouts automatically, to replace or reduce human work.



Related works: data-driven

• Graphical model methods

[Fisher et al. SIGA 2012], [Kermani et al. SGP 2016], [Qi et al. CVPR 2018]

Respect object-object relations	
☺ Too many parameters and rules to tune manual	У
⊖ Time-consuming	
$\longrightarrow Parent Edge \longrightarrow Boolean Edge$	
Object appearance + Object positioning	

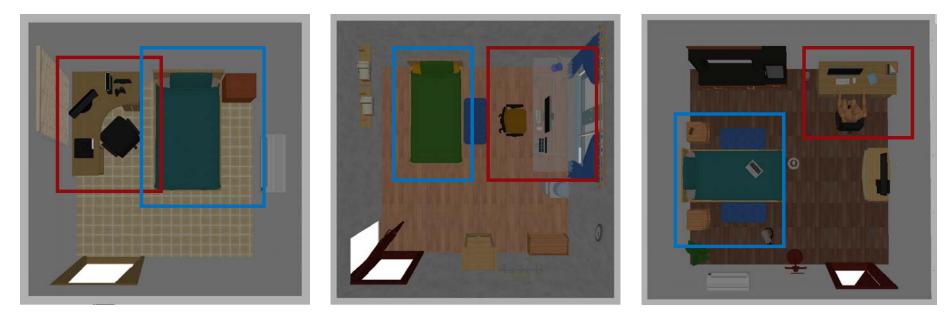
Related works: data-driven

- Graphical model methods
- Deep neural networks

[Wang et al. SIGGRAPH 2018], [Ritchie et al. CVPR 2019]

Our method

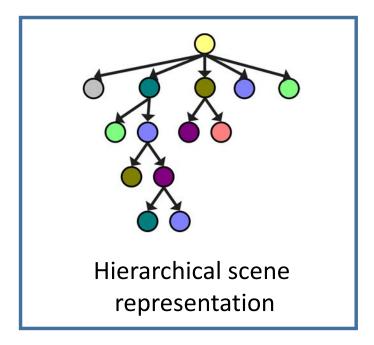
• Indoor scene structures are inherently hierarchical.

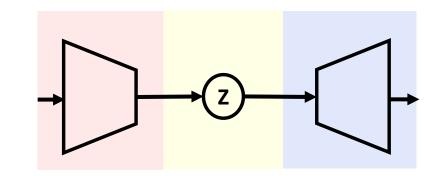


Indoor scenes share some common patterns in the sub-scenes.

Our method

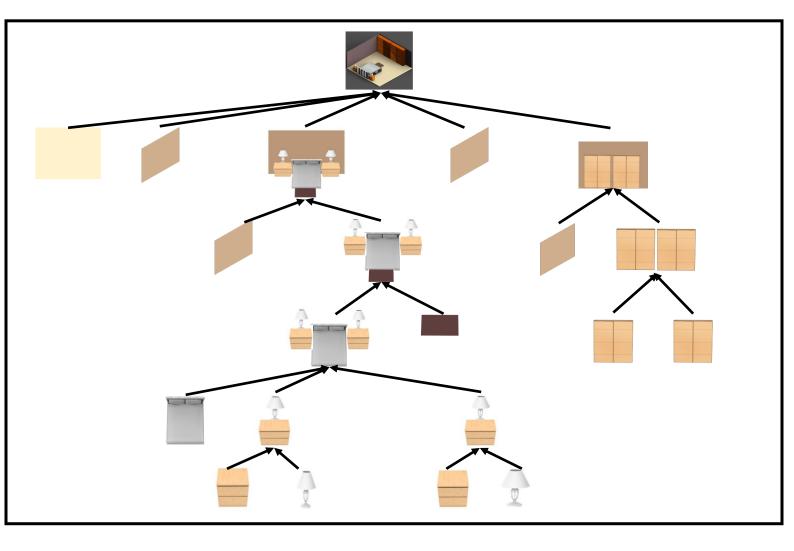
• Indoor scene structures are inherently hierarchical.

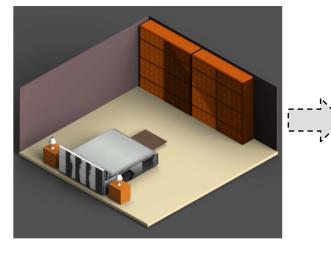




Recursive neural network -Variational Auto-encoder

Step1: Deciding the merge order

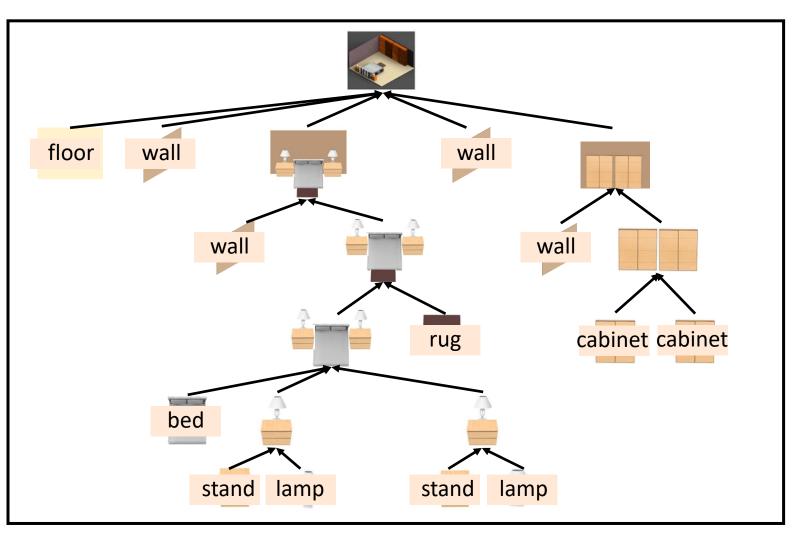


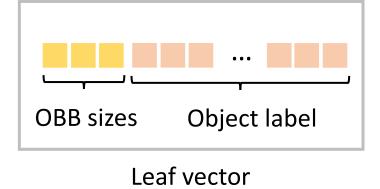


Step1: Deciding the merge order

Step2: Construct the nodes of the hierarchy

• Leaf nodes: objects

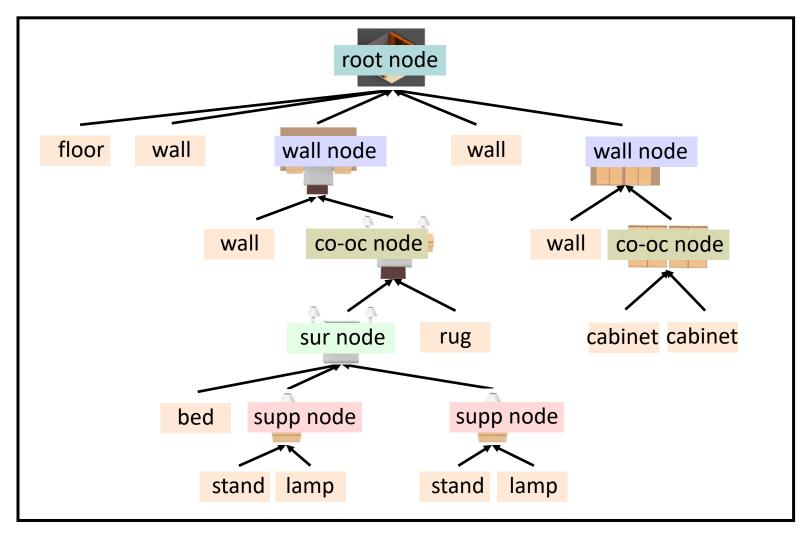




Step1: Deciding the merge order

Step2: Construct the nodes of the hierarchy

- Leaf nodes: objects
- Internal nodes: groups
 - Support node
 - Surround node
 - Co-occur node
 - Wall node
 - Root node

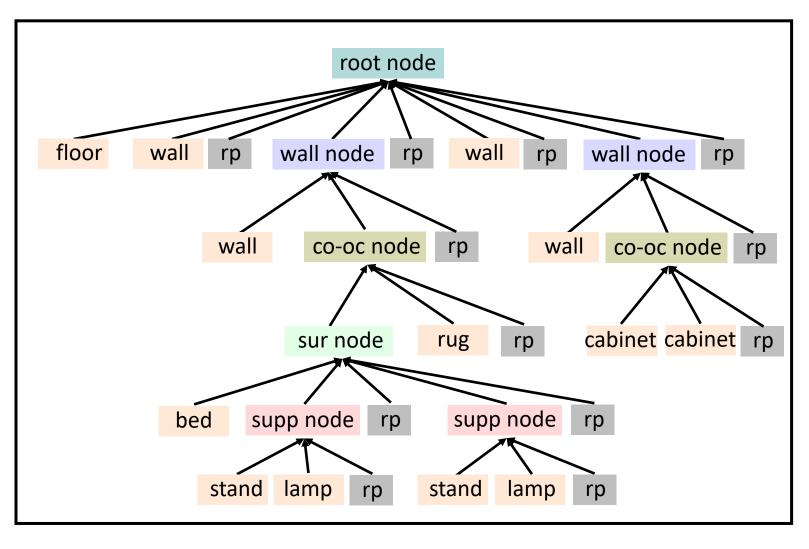


Step1: Deciding the merge order

Step2: Construct the nodes of the hierarchy

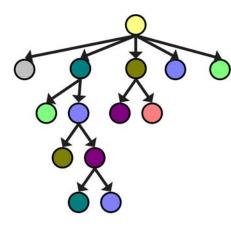
- Leaf nodes: objects
- Internal nodes: groups

Step3: Compute relative positions between sibling nodes

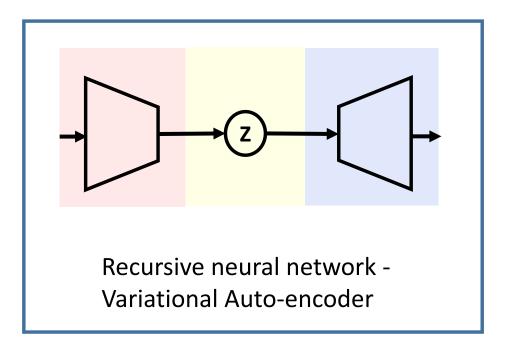


Our method

• Indoor scene structures are inherently hierarchical.

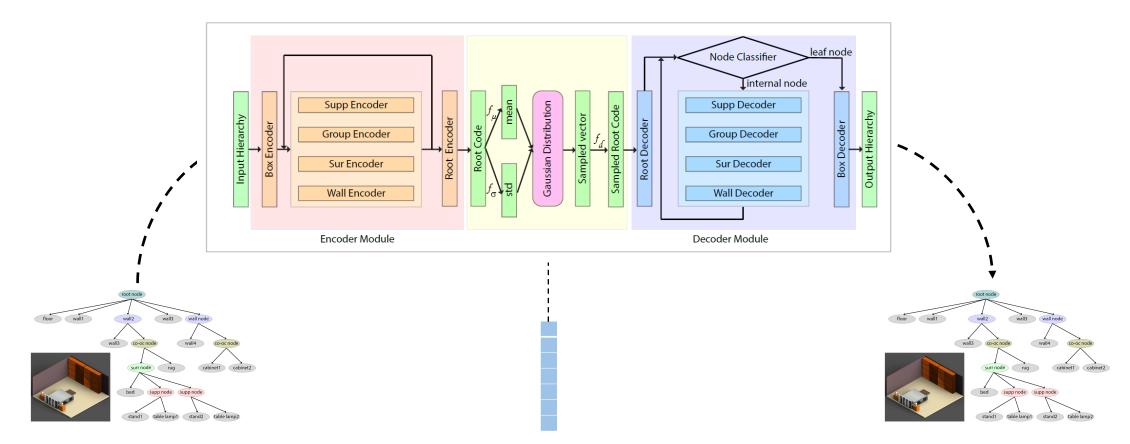


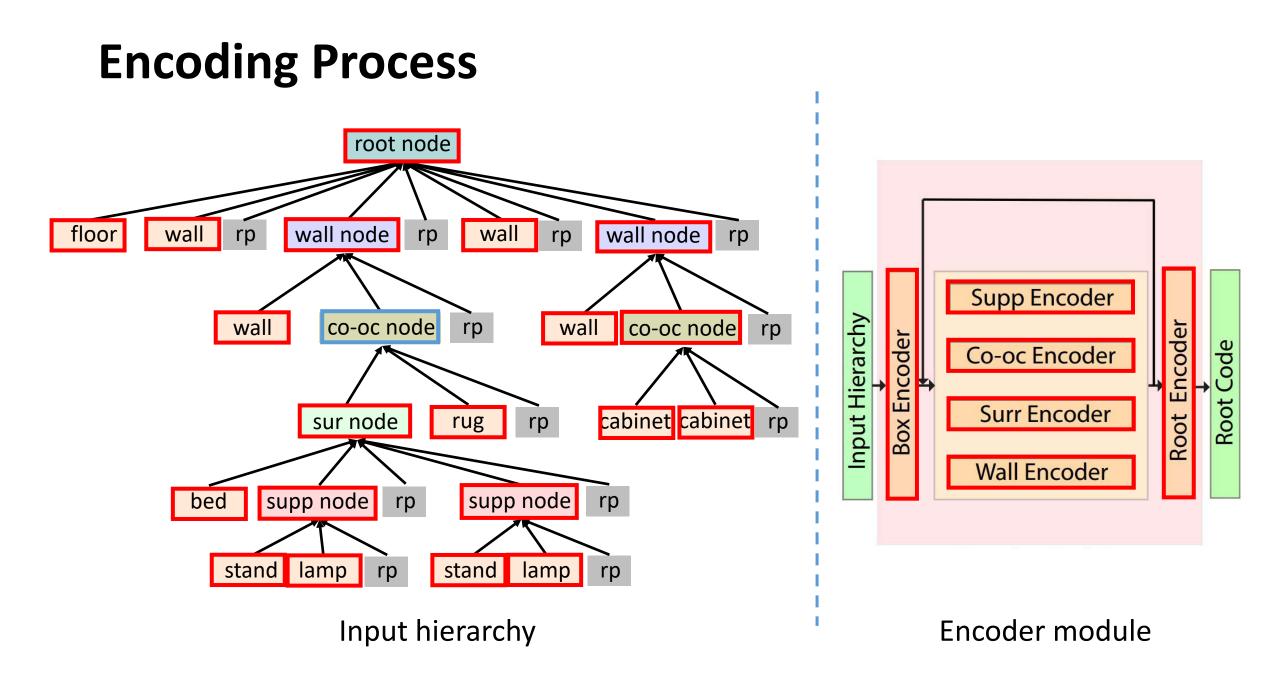
Hierarchical scene representation



Network

• Network: RvNN-VAE (Recursive Neural Network – Variational Auto-Encoder)

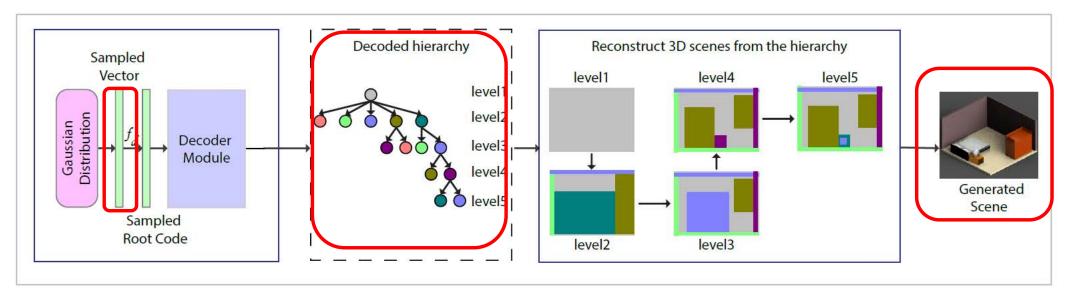






Generation Pipeline

• The network learns to map a random vector to a plausible indoor scene.

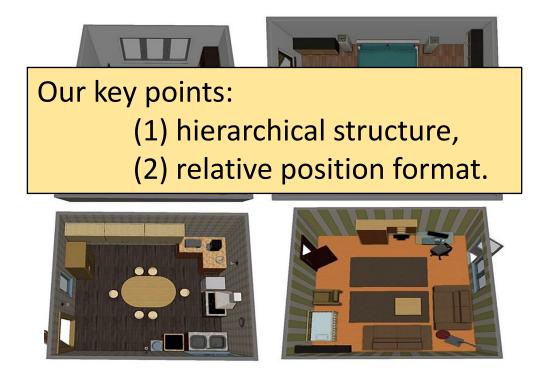


Generation pipeline

Scene representation matters!

Indoor scenes are complex and diverse

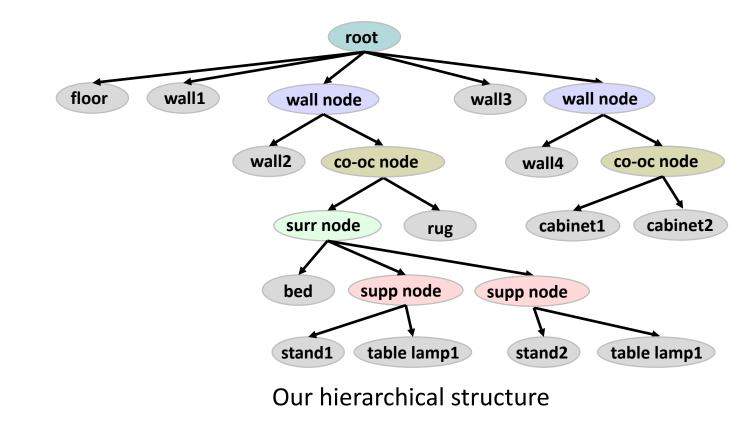
Appropriate scene representation is the key to learning

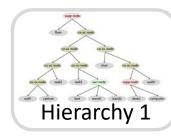


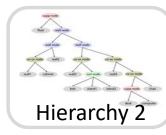
SUNCG dataset [Song et al. 2017]

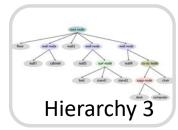
Key point 1: Hierarchical structure

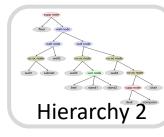
- We specifically define wall node and root node in our hierarchies.
- Reason: walls should serve the role of "grounding" the placement of objects in a room.

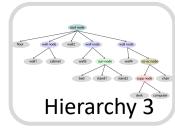


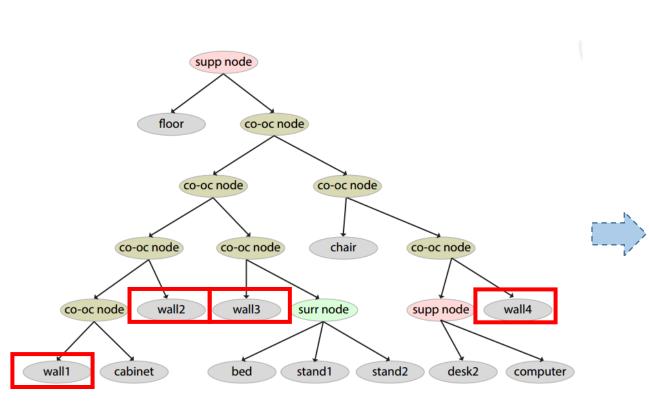






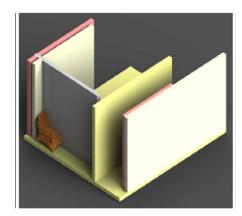




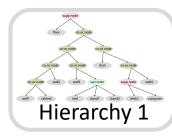


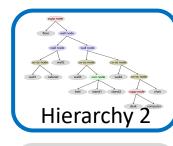
Hierarchy 1: (a) No "wall node"s

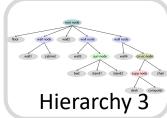
⊗ No "root node"

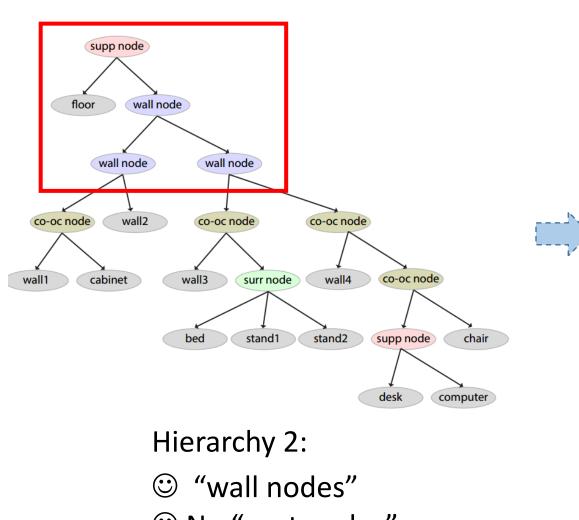


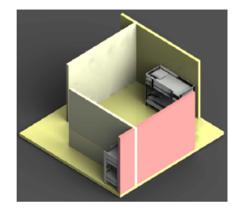
Generated scenes

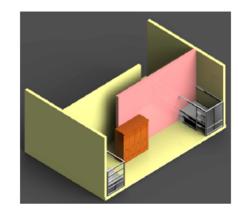










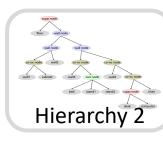


Generated scenes

root node

object positions.

wall node wall node wall node floor wall2 It is important to have floors, wall nodes, and their



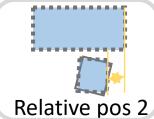
desk computer

Hierarchy 3 (Ours):

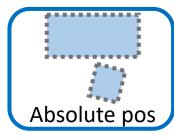
relative positions in the last merge, to "ground" the

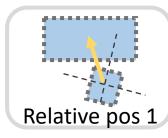
- ☺ "wall nodes"
- ☺ "root nodes"

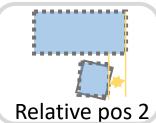
Key point 2: Relative Position format

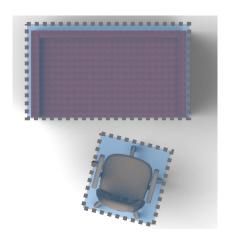


Ablation Studies : Relative position format

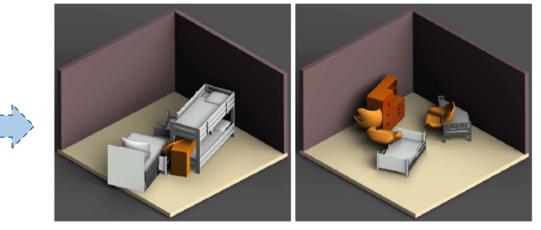






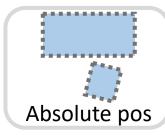


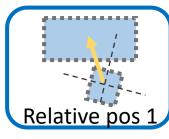
Object's absolute position in the leaf nodes

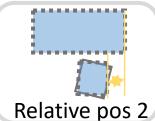


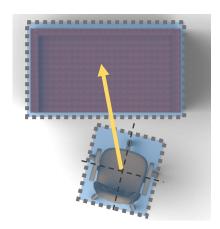
Ablation Studies : Relative position format



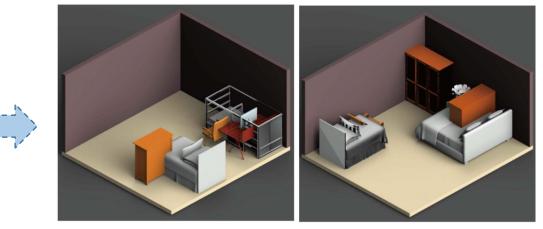




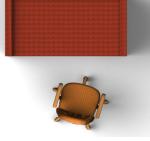




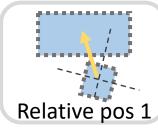
Relative position between the object centers

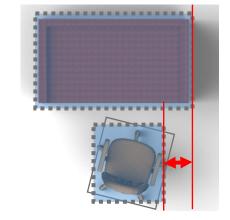


Ablation Studies : Relative position format

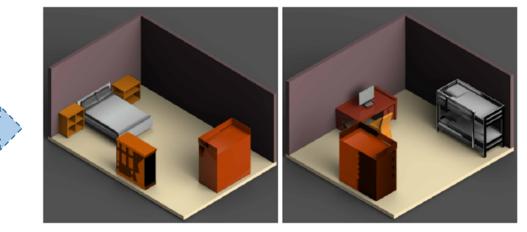


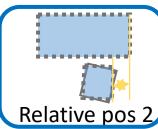






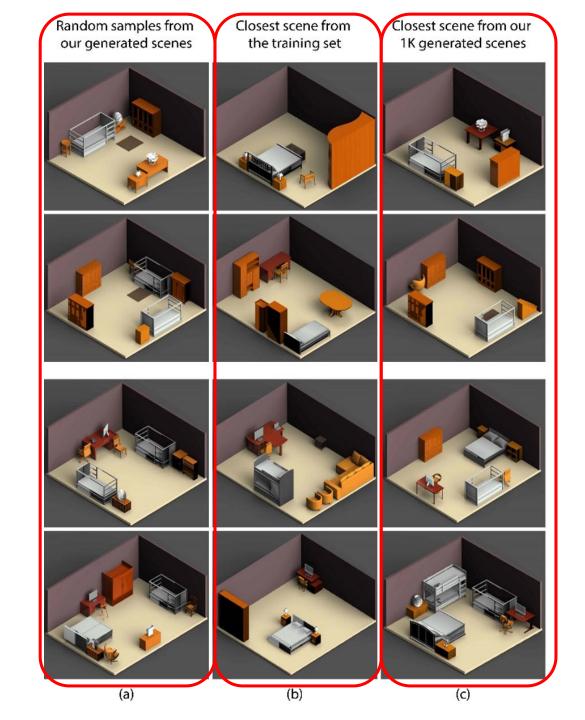
Relative position with offsets between closest edges (ours)





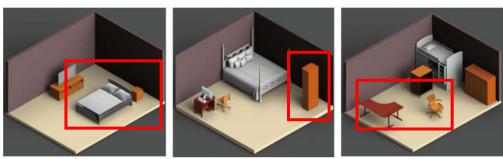
Results

- Plausible
- Novel
- Diverse

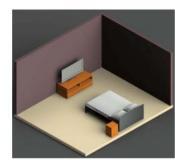


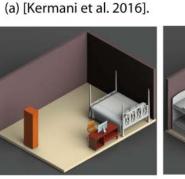
Comparison against a graphical model method

• For comparison, we select scenes with the same object shapes.



- 3-12min / scene. ٠
- No guarantee on the exact alignment. ۲
- More unreasonable object pairs. •





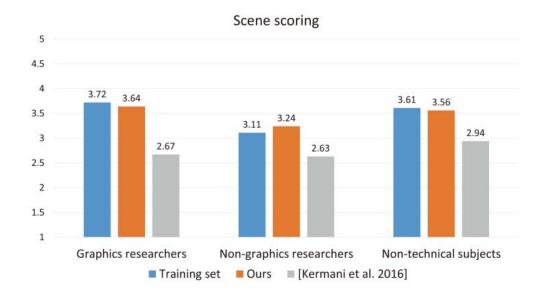
(b) Our results.

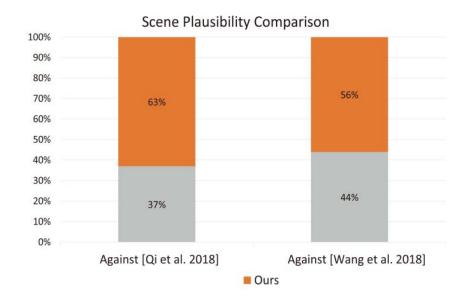
- 0.1027sec / scene. ٠
- Relative positions with attachment and • alignment information.

Comparison: Perceptual studies

We ask users to score or select the scenes based on their plausibility.

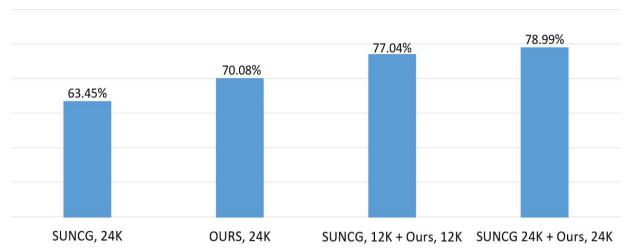
Comparisons are done against (1) the training set, (2) [Kermani et al. 2016] (3) [Wang et al. 2018], (4) [Qi et al. 2018]





Applications

• Data augmentation method for deep learning tasks



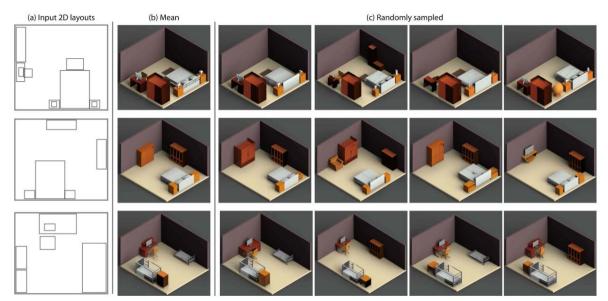
Semantic scene segmentation accuracy

Semantic scene segmentation task:

- Network: PointNet [Qi et al. 2017]
- Dataset: Indoor scenes as point clouds
- Results: More *relevant* training data, better learning performance and generalization.

Applications

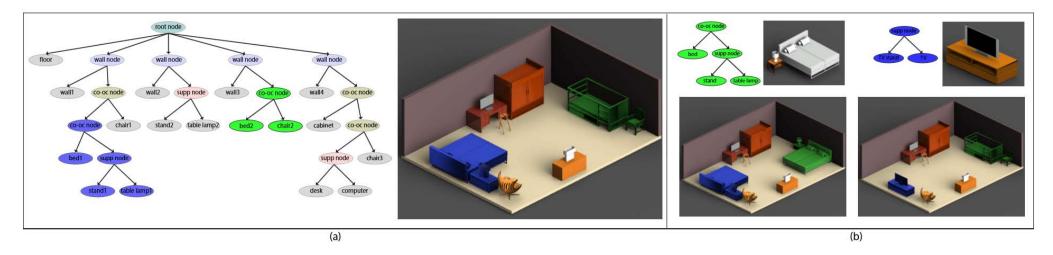
- Data augmentation method for deep learning tasks
- 2D layout guided 3D scene modeling



- Goal: 2D box layout to 3D indoor scene
- Network: Pre-trained RvNN-VAE on 3D scenes
- Result: Transform between multi-modal data which share the same hierarchical structures.

Applications

- Data augmentation method for deep learning tasks
- 2D layout guided 3D scene modeling
- Hierarchy-guided scene editing



Hierarchical indoor scene structure helps designers to edit a scene at the sub-scene level.

Conclusion

- We present a generative neural network which enables us to generate plausible 3D indoor scenes in large quantities and varieties, easily and highly efficiently.
- We study the influence of different scene representations on the learning ability of generative RvNNs.
- We show the applications of our generated scenes with the corresponding hierarchies.

Thank you!