

End-to-end Learning for Computational Imaging Realization of Diffractive Achromat and Super-resolution SPAD Camera

Xiong Dun dunx@tongji.edu.cn

Tongji University

Institute of Precision Optical Engineering Key Laboratory of Advanced Micro-Structured Materials MOE

2020-01-09

Define and Background

Two examples

1. Learned achromatic DOE for full spectrum computational imaging

2. Optically Coded Super-resolution SPAD Camera

Conclusion

Computational Imaging

Solving an optimization problem:

$$\mathbf{i} \approx \operatorname{arg\,min}_{\mathbf{i}} \frac{\mu}{2} \|\mathbf{b} - \mathbf{P} \cdot \mathbf{i}\|_{2}^{2} + \Gamma(\mathbf{i})$$

Deep Learning

GEORGE BARBASTATHIS,2019

Based on neural network (NN). Composed by lots of simple nonlinear processing units, Each unit receives its inputs as weighted sums from the previous

Deep Learning based computational imaging

Define and Background

Two examples

1. Learned achromatic DOE for full spectrum computational imaging

2. Optically Coded Super-resolution SPAD Camera

Conclusion

Problem statement

Previous methods

Belong to collaborate. Design achromatic based on Handed-craft target PSF.

Peng et al. 2016

May not the optimal PSF for latter image processing

Meem et al. 2019

Proposed method

Proposed method

- Origin rotational symmetric
 - **Fresnel propagation**

Discrete Hankel transform

Past

For Nvidia 1080TI GPU, the largest pixel sample numbers are 2500 by 2500 with 3-wavelength channels

With proposed 1 D simulator

Can design pixel number of 8000 by 8000 with 31-wavelength channels

Simulation results

Real capture (FLIR GS3-23S6C-C)

Sensor output

proposed

Real capture (cannon D60)

Define and Background

Two examples

1. Learned achromatic DOE for full spectrum computational imaging

2. Optically Coded Super-resolution SPAD Camera

Conclusion

Problem statement

SPAD array sensor

Photosensitive area of a detector "Smart" pixel State photon-counting & photon-count

- Single photon level sensitivity
- Pico-second level time resolution
- Low spatial resolution(32*64)
- Low fill-factor(3.15%)

Previous methods

Sun et al. 2018

Based on Compressive sensing, the system is very complicated

Proposed method

Simulation result

Low fillfactor

Low fill-factor (no mask)

Vith phase mask

With phase mask

model	Set5 PSNR	Set14 PSNR	BSDS100 PSNR
Low fill- factor	27.13	24.12	23.95
Full fill- factor	29.48	25.93	25.55
Ours	30.76	26.91	26.23

Full fill-factor

Ground Truth

Ours

Real capture (the optimized mask is helpful)

Raw image without mask

Raw image with mask

Result without mask

Result with mask

Real capture (MTF test)

Real capture (more results)

Real capture (more results)

Depth/mm

SPAD measurement summed over time axis

Reconstruction depth map

Real capture (more results)

SPAD measurement (time resolved 20ps)

Reconstruction result

Reference

Define and Background

Two examples

1. Learned achromatic DOE for full spectrum computational imaging 2. Optically Coded Super-resolution SPAD Camera

Conclusion

Conclusion

Benefit from the end to end design framework

Example 1

- 1. Automatic seek the best-fit PSFs instead of non-optimized handcrafted PSFs
- 2. Obtain good results even with a relatively simple image processing algorithm

Example 2

- 1. Achieve an spatial resolution enhancement of $4 \times$
- 2. Optimized compromise between sharpness and anti-aliasing for a given pixel fill-factor.

• Performance & robustness gains

 Domain-specific hardware reduce footprint, cost, power, capture time...

we envision the end to end design can boost lots of applications

Relative papers

- Q.L. Sun, J. Zhang, X. Dun, B. Ghanem, Bernard, Y.F. Peng, Yifan and Heidrich, W. Heidrich, End-to-End Learned, Optically Coded Super-resolution SPAD Camera, ACM Transactions on Graphics, 2020
- 2. Y.F. Peng*, Q.L. Sun*, X. Dun*, G. Wetzstein, W. Heidrich, F. Heide. Learned Large Field-of-View Imaging With Thin-Plate Optics. ACM Transactions on Graphics, 2019.
- 3. X. Dun, Z.S. Wang, Y.F. Peng. Joint-designed achromatic diffractive optical element for full-spectrum computational imaging (Invited Paper). Proc. of SPIE (2019).
- 4. D. S. Jeon, S.H. Baek, S. Yi, Q. Fu, X. Dun, W. Heidrich, M.H. Kim, Compact Snapshot Hyperspectral Imaging with Diffracted Rotation, ACM Transactions on Graphics, (2019).
- 5. V. Sitzmann, S. Diamond, Y.F. Peng, X. Dun, S. Boyd, W. Heidrich, Felix Heide, Gordon Wetzstein. End-to-end Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-resolution Imaging. ACM Transactions on Graphics, 2018.
- 6. Q.L. Sun, X. Dun, Y.F. Peng, W. Heidrich, Depth and Transient Imaging with Compressive SPAD Array Cameras, in CVPR. 2018

Y.F. Peng	Q.L. Sun	V. Sitzmann	D. S. Jeon
Stanford University	KAUST	Stanford University	KAIST

M.H. Kim	G. Wetzstein	W. Heidrich
KAIST	Stanford University	KAUST

Thank you!

Xiong Dun

Tongji University

dunx@tongji.edu.cn