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* Gradient-domain Rendering — Base Path
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"Gradient-domain Rendering

SIGGRAPH
ASIA 2019

Four finite difference
samples per pixel
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”* Screened Poisson Reconstruction

SIGGRAPH e« For a base image and gradients rendered by any gradient-
ASIA 2019 : : C
domain algorithms, we can reconstruct the final image by
solving the following optimization problem

VxI - Idx

I= arg min
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SIGGRAPH e« For a base image and gradients rendered by any gradient-
ASIA 2019 : : C
domain algorithms, we can reconstruct the final image by
solving the following optimization problem

Gradient term Data term
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"Screened Poisson Reconstruction

SIGGRAPH ¢ Lp norm
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P = 2 means L, reconstruction p =1 means L, reconstruction
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"Regularization

SIGGRAPH « A regularized version of the screened Poisson solver can
ASIA 2019 :
_ be written as
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METHOD DEEP LEARNING BASED AUXILIARY BUFFERS PERFORMANCE
L1 X X =0.45s GPU
CV [Rousselle et al. 2016] X X =2s CPU
LTS [Ha et al. 2019] x x =1.7s CPU
NFOR [Bitterli et al. 2016] X v =~200s CPU
REG [Manzi et al. 2016] X \' ~60s GPU
KPCN [Bako et al. 2017] V Supervised \' =1.7s GPU
[Kettunen et al. 2019] V Supervised \' =0.3s GPU
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’ "Related Work (REG [Manzi et al. 2016])
S|GG§APH Enknown image Normal Texture Position Ambient occlusion
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Solved by an iteratively reweighted least squares (IRLS) approach
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SIGGRAPH  Input (16 feat.) Output (RGB)
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1. Using gradients as an additional feature
2. Adopting a new perceptual loss
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"Our Method
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* Deep learning based

* Unsupervised

* Fast to reconstruct high-quality image
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"Our Solution

SIGGRAPH < Replace the traditional optimization in screened Poisson
ASIA 2019 : )
reconstruction with GradNet

GradNet
Gradient-
Renderer U+E>D+D+H
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Residual Block

—p Conv (3%3,Stride 2) + LReLU = Deconv (4x4, Stride 2) + LReLLL
=p Conv (3%3, Stride 1) + ReLLU — Conv (3x3, Stride 1) + LReLL —+ Skip Connection
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"Network Architecture
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SIGGRAPH * Multi-branch auto-encoder with dual skip connection

G
ASIA2319 Data branch

Data-Branch
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Residual Block

= Cony [3HFE d vastride 2) + LReLL p (
=p Conv (3%3, Stride 1) + ReLLU — Conv (3x3, Stride 1) + LReLU —+ Skip Connection G_b ra nch fo r
Gradient branch generating derivative

SA2019.SIGGRAPH.ORG

CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA



Z
7/
~ {‘i

SIGGRAPH
ASIA 2019

Impact of the Branches

One-branch encoder weaken the
effects of sparse image gradients
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SIGGRAPH + We employ the p-law transformation to compress HDR

L5977 data
, log(1 + abs(I)u)
T(1) = sign(l) glog s a

* The p-law transformation makes the training process
easier than naive log transformation
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(b) log (epoch= 10)

Epoch

(a) Evolution of RelMSE (c) pt = 16 (epoch= 10)
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"Loss Function

SIGGRAPH * The loss function contains 3 items
ASIA 2619
BRISBA e data item, gradient item and first-order item

L = Lgrad(ia Idx, Idy) + a'-Edata(ia Iy) + ALISt(ia F)

e Data item:
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"Loss Function

SIGGRAPH * The loss function contains 3 items
ASIA 2619
ISBA e data item, gradient item and first-order item

L = -Egrad(ia Idx, Idy) + a'-Edata(is Iy) + ALISt(ia F)

e Gradient item:

N
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"Loss Function

SIGGRAPH * The loss function contains 3 items
ASIA 2619
ISBA e data item, gradient item and first-order item

L = -Egrad(ia Idx, Idy) + a'-Edata(is Iy) + ALISt(ia F)

* The first-order item:

-Llst (is F)

Z > wi Il -7 (1) -G (F;—Fy)|
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"First-order Regularization

SIGGRAPH * The first-order regularization defines as follow
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/" 77 First-order Regularization
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ggg%gﬁg * The first-order regularization encourages nearby pixels to
lie on a hyper-plane parameterized by G
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/"}""‘ Impact of the First-order Loss
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512 spp (0.0062) |512 spp (0.0037)

w.0. the first-order loss w. the first-order loss reference
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%‘“ Bias of Network

SIGGR%PH 1 will introduce bias to the reconstructed image
s _ §

n=16 (mean: 0.187)

=128 (mean: 0.176) u=1024 (mean: 0.163)
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/" 77" Post-Processing
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SIGGRAPH * We find a simple post-processing step can reduce the bias
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_/“77" Training Details

SIGGRAPH « Adam optimizer
ASIA 2019
e B1=0.5and 2 =0.999

* |nitial learning rate = 0.0001 and decays with the power of
0.95 for every other epoch

e A follows the schedule

3 = 0 if epoch <5
" | min(0.1 x 1.1(¢P°¢h=5) 2 0) if epoch > 5

—a

* Train main branches and G-branch alternatively for 50
epochs with 32 mini-batches
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"Dataset
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SIGGRAPH ¢ Randomly perturb 9 base scenes and render to 900 high-
ASIA 2019 T :
resolution images with 64 spp
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?A Dataset

SIGGRAPH * 12654 patches with 256x256 resolution are extracted from
these 900 high- resolutlon images
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"”" Comparlson W|th tradltlonal methods
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/” 77" Comparison with traditional methods
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/"j”" Comparison with traditional methods
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"Comparison with traditional methods

ﬁgﬁg’%g * Comparison with the regularized reconstruction method
' of Manzi et al. [2016]

REG(010054) Quirs(0.0046)

* Time: >1min (REG) vs. 0.16s (ours)
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Comparison with traditional methods

RelMSE
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/“:’"‘ Comparison with KPCN
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/“W Comparison with KPCN
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"”" Impact of the Trammg Datasets
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"Conclusion

* The first unsupervised deep learning solution to
screened Poisson reconstruction.

* A multi-branch auto-encoder allowing extracting both
low-frequency contents and high-frequency details.

e A novel reconstruction loss function incorporating
auxiliary feature buffers.
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/77" Future Work
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SIGGRAPH : :
ASIA 2619 Adding an adversarial loss to further enhance
important local structures of reconstructed images.

* Extend to the temporal domain by introducing
temporal finite differences.

* Combine our technology with adaptive sampling.
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