

GradNet: Unsupervised Deep Screened Poisson Reconstruction for Gradient-Domain Rendering

Jie Guo¹ Mengtian Li¹ Quewei Li¹ Yuting Qiang¹ Bingyang Hu¹ Yanwen Guo¹ Ling-Qi Yan²

¹State Key Lab for Novel Software Technology, Nanjing University ²University of California, Santa Barbara

Light

Gradient-domain Rendering

ΔS

Gradient-domain Rendering

Screened Poisson Reconstruction

• For a base image and gradients rendered by any gradientdomain algorithms, we can reconstruct the final image by solving the following optimization problem

$$\hat{\mathbf{I}} = \arg\min_{\mathbf{I}} \left\{ \left\| \begin{pmatrix} \nabla_{x} \mathbf{I} \\ \nabla_{y} \mathbf{I} \end{pmatrix} - \begin{pmatrix} \mathbf{I}_{dx} \\ \mathbf{I}_{dy} \end{pmatrix} \right\|_{p} + \alpha \| (\mathbf{I} - \mathbf{I}_{b}) \|_{p} \right\}$$

Screened Poisson Reconstruction

• For a base image and gradients rendered by any gradientdomain algorithms, we can reconstruct the final image by solving the following optimization problem

$$\hat{\mathbf{I}} = \arg\min_{\mathbf{I}} \left\{ \left\| \begin{pmatrix} \nabla_{x} \mathbf{I} \\ \nabla_{y} \mathbf{I} \end{pmatrix} - \begin{pmatrix} \mathbf{I}_{dx} \\ \mathbf{I}_{dy} \end{pmatrix} \right\|_{p} + \alpha \| (\mathbf{I} - \mathbf{I}_{b}) \|_{p} \right\}$$

Gradient term Data term

Screened Poisson Reconstruction

p = 2 means L₂ reconstruction

p = 1 means L₁ reconstruction

Regularization

• A regularized version of the screened Poisson solver can be written as

$$\hat{\mathbf{I}} = \arg\min_{\mathbf{I}} \left\{ \left\| \begin{pmatrix} \nabla_{x} \mathbf{I} \\ \nabla_{y} \mathbf{I} \end{pmatrix} - \begin{pmatrix} \mathbf{I}_{\mathrm{d}x} \\ \mathbf{I}_{\mathrm{d}y} \end{pmatrix} \right\|_{p} + \alpha \| (\mathbf{I} - \mathbf{I}_{\mathrm{b}}) \|_{p} + \lambda \Omega(\mathbf{I}, \mathbf{F}) \right\}$$
Regularizer

SA2019.SIGGRAPH.ORG

Regularized Screen Poisson Reconstruction

Regularized Screen Poisson Reconstruction

Rendering-specific features

Rendering-specific features

Related Work

METHOD	DEEP LEARNING BASED	AUXILIARY BUFFERS	PERFORMANCE
L1	×	×	≈0.45s GPU
CV [Rousselle et al. 2016]	×	×	≈2s CPU
LTS [Ha et al. 2019]	×	×	≈1.7s CPU
NFOR [Bitterli et al. 2016]	×	V	≈200s CPU
REG [Manzi et al. 2016]	×	V	≈60s GPU
KPCN [Bako et al. 2017]	✓ Supervised	V	≈1.7s GPU
[Kettunen et al. 2019]	✓ Supervised	V	≈0.3s GPU

Related Work

METHOD	DEEP LEARNING BASED	AUXILIARY BUFFERS	PERFORMANCE
L1	×	×	≈0.45s GPU
CV [Rousselle et al. 2016]	×	×	≈2s CPU
LTS [Ha et al. 2019]	×	×	≈1.7s CPU
NFOR [Bitterli et al. 2016]	×	V	≈200s CPU
REG [Manzi et al. 2016]	×	V	≈60s GPU
KPCN [Bako et al. 2017]	√ Supervised	V	≈1.7s GPU
[Kettunen et al. 2019]	√ Supervised	V	≈0.3s GPU

Feature Bases via Truncated SVD.

Solved by an iteratively reweighted least squares (IRLS) approach

Related Work ([Kettunen et al. 2019])

- 1. Using gradients as an additional feature
- 2. Adopting a new perceptual loss

SIGGRAPH

RANF

SA2019.SIGGRAPH.ORG

- Unsupervised
- Fast to reconstruct high-quality image

Replace the traditional optimization in screened Poisson reconstruction with GradNet

Network Architecture

Multi-branch auto-encoder with dual skip connection

20

SIGGRAPH • Multi-branch auto-encoder with dual skip connection Data branch

Impact of the Branches

(a) One-branch

(b) Two-branch (c) Reference

One-branch encoder weaken the effects of sparse image gradients

SA2019.SIGGRAPH.ORG CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

22

Dynamic Range Compression

- We employ the μ -law transformation to compress HDR data $\mathcal{T}(I) = sign(I) \frac{\log(1 + abs(I)\mu)}{\log(1 + \mu)}$
- The μ -law transformation makes the training process easier than naïve log transformation

CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

SIGGRAPH

Loss Function

- The loss function contains 3 items
 - data item, gradient item and first-order item

$$\mathcal{L}_{all} = \mathcal{L}_{grad}(\hat{\mathbf{I}}, \mathbf{I}_{dx}, \mathbf{I}_{dy}) + \alpha \mathcal{L}_{data}(\hat{\mathbf{I}}, \mathbf{I}_{b}) + \lambda \mathcal{L}_{1st}(\hat{\mathbf{I}}, \mathbf{F})$$

• Data item:

$$\mathcal{L}_{\text{data}}(\hat{\mathbf{I}}, \mathbf{I}_{\text{b}}) = \frac{1}{N} \sum_{i=1}^{N} \|\mathcal{T}(\hat{\mathbf{I}}_{i}) - \mathcal{T}(\mathbf{I}_{\text{b}, i})\|$$

Loss Function

- The loss function contains 3 items
 - data item, gradient item and first-order item

$$\mathcal{L}_{all} = \mathcal{L}_{grad}(\hat{\mathbf{I}}, \mathbf{I}_{dx}, \mathbf{I}_{dy}) + \alpha \mathcal{L}_{data}(\hat{\mathbf{I}}, \mathbf{I}_{b}) + \lambda \mathcal{L}_{1st}(\hat{\mathbf{I}}, \mathbf{F})$$

• Gradient item:

 $\mathcal{L}_{\text{grad}}(\hat{\mathbf{I}}, \mathbf{I}_{\text{d}x}, \mathbf{I}_{\text{d}y}) = \frac{1}{N} \sum_{i=1}^{N} (\|\mathcal{T}(\nabla_{x} \hat{\mathbf{I}}_{i}) - \mathcal{T}(\mathbf{I}_{\text{d}x, i})\| + \|\mathcal{T}(\nabla_{y} \hat{\mathbf{I}}_{i}) - \mathcal{T}(\mathbf{I}_{\text{d}y, i})\|).$

AS

w. gradient loss w.o. gradient loss

Loss Function

- The loss function contains 3 items
 - data item, gradient item and first-order item

$$\mathcal{L}_{\text{all}} = \mathcal{L}_{\text{grad}}(\hat{\mathbf{I}}, \mathbf{I}_{\text{d}x}, \mathbf{I}_{\text{d}y}) + \alpha \mathcal{L}_{\text{data}}(\hat{\mathbf{I}}, \mathbf{I}_{\text{b}}) + \lambda \mathcal{L}_{1\text{st}}(\hat{\mathbf{I}}, \mathbf{F})$$

• The first-order item:

$$\mathcal{L}_{1st}(\hat{\mathbf{I}}, \mathbf{F}) = \frac{1}{N|\mathcal{N}_i|} \sum_{i=1}^N \sum_{j \in \mathcal{N}_i} w_{i,j} \|\mathcal{T}(\hat{\mathbf{I}}_j) - \mathcal{T}(\hat{\mathbf{I}}_i) - \mathbf{G}_i^{\mathsf{T}}(\mathbf{F}_j - \mathbf{F}_i)\|$$

First-order Regularization

SIGGRAPH • The first-order regularization defines as follow

First-order Regularization

 The first-order regularization encourages nearby pixels to lie on a hyper-plane parameterized by G

Impact of the First-order Loss

SIGGRAPH ASIA 2019 BRISBANE

w.o. the first-order loss

w. the first-order loss

reference

Bias of Network

μ will introduce bias to the reconstructed image

Reference (mean: 0.204)

μ = 128 (mean: 0.176)

μ = 16 (mean: 0.187)

μ = 1024 (mean: 0.163)

Post-Processing

• We find a simple post-processing step can reduce the bias

 $\hat{I} \leftarrow \frac{I_b \ast k}{\hat{I} \ast k} \odot \hat{I}$

Without P.P.

Training Details

- Initial learning rate = 0.0001 and decays with the power of 0.95 for every other epoch
- λ follows the schedule

$$\lambda = \begin{cases} 0 & \text{if epoch} \le 5\\ \min(0.1 \times 1.1^{(\text{epoch}-5)}, 2.0) & \text{if epoch} > 5 \end{cases}$$

 Train main branches and G-branch alternatively for 50 epochs with 32 mini-batches

Randomly perturb 9 base scenes and render to 900 highresolution images with 64 spp

 12654 patches with 256x256 resolution are extracted from these 900 high-resolution images

Results

SA2019.SIGGRAPH.ORG

CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

36

SIGGRAPH ASIA 2019 BRISBANE

Comparison with traditional methods

SIGGRAPH

ASIA 2019 BRISBANE

Comparison with traditional methods

SA2019.SIGGRAPH.ORG CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

39

SIGGRAPH

2019

AS

SIGGRAPH

• Time: >1min (REG) vs. 0.16s (ours)

42

SIGGRAPH

Comparison with KPCN

43

Comparison with KPCN

44

SIGGRAPH ASIA 2019 BRISBANE

Impact of the Training Datasets

1/4 dataset

1/2 dataset

Full dataset

SA2019.SIGGRAPH.ORG CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

46

Conclusion

- The first unsupervised deep learning solution to screened Poisson reconstruction.
- A multi-branch auto-encoder allowing extracting both low-frequency contents and high-frequency details.
- A novel reconstruction loss function incorporating auxiliary feature buffers.

Future Work

- Adding an adversarial loss to further enhance important local structures of reconstructed images.
- Extend to the temporal domain by introducing temporal finite differences.
- Combine our technology with adaptive sampling.

SIGGRAPH ASIA 2019 BRISBANE Thank you

Jie Guo guojie@nju.edu.cn

sa2019.siggraph.org